Калькуляторы расчета размеров развертки конуса
Содержание:
- Круглый конус в геометрии
- Решение задачи
- Как выбрать уклон
- ОБРАБОТКА КОНИЧЕСКИХ ПОВЕРХНОСТЕЙ
- Обозначение конусности на чертеже
- Колпак на дымоход своими руками
- Построение развертки конуса на бумаге
- Для чего используется конус
- Для чего используется конус
- Уклоны и конусность — Техническое черчение
- Вид развертки конуса
- Вид развертки конуса
- Угол и площадь развертки
- Получение фигуры с помощью вращения
- Калькуляторы расчета размеров развертки конуса — с пояснениями
- Изготовление конусов
Круглый конус в геометрии
Приведем геометрическое определение этой фигуры. Круглым конусом называется поверхность, которая образована прямыми отрезками, соединяющими все точки некоторой окружности с одной-единственной точкой пространства. Эта единственная точка не должна принадлежать плоскости, в которой лежит окружность. Если вместо окружности взять круг, то указанный способ также приводит к получению конуса.
Круг называется основанием фигуры, его окружность — это директриса. Отрезки, соединяющие точку с директрисой, называются генератрисами или образующими, а точка, где они пересекаются — это вершина конуса.
Круглый конус может быть прямым и наклонным. Обе фигуры показаны ниже на рисунке.
Разница между ними заключается в следующем: если перпендикуляр из вершины конуса падает точно в центр окружности, то конус будет прямым. Для него перпендикуляр, который называется высотой фигуры, является частью его оси. В случае конуса наклонного высота и ось образуют некоторый острый угол.
Ввиду простоты и симметричности фигуры далее будем рассматривать свойства только прямого конуса с круглым основанием.
Решение задачи
Даже простая задача о том, как изготовить ведро определенного объема, требует знаний. Например, необходимо рассчитать размеры ведра, чтобы оно имело объем 10 литров.
Развертка конуса имеет вид, схематически приведенный на рисунке 3.
L — образующая конуса.
Чтобы узнать площадь поверхности ведра, которая вычисляется по следующей формуле:
необходимо вычислить образующую. Ее находим из величины объема V=n*(R1 2 +R2 2 +R1*R2)*H/3.
Усеченный конус образуется вращением прямоугольной трапеции, в которой боковая сторона является образующей конуса.
Теперь у нас имеются все данные, чтобы построить чертеж ведра.
Как выбрать уклон
Гост 24705-2004 (исо 724:1993) основные нормы взаимозаменяемости. резьба метрическая. основные размеры
Чтобы определить какой должен быть минимальный уклон трубы, который будет оптимальным для Вас, нужно знать длину всей канализационной системы. В справочниках используются данные сразу в готовом виде, их изображают в сотых частях целого числа. Некоторым работникам сложно ориентироваться в такой информации без объяснений. Например, информация в справочниках представлена вот в таком виде как на рисунках ниже:
Таблица: необходимые уклоны и диаметры труб для слива
Таблица: уклоны отводных труб в квартире
Минимальный и максимальный уклон канализации на 1 метр погонный по СНиПу
Ниже представлена картинка, на которой показаны, минимальные уклоны в зависимости от диаметра на 1 метр погонный трубы. Например, мы видим, что для трубы диаметром 110 — угол уклона 20 мм, а для диаметра 160 мм — уже 8 мм и так далее. Запомните правило: чем больше диаметр трубы, тем меньше угол уклона.
Примеры минимальных уклонов канализации на 1 метр по СНиП в зависимости от диаметра трубы
Например, уклон для трубы диаметром до 50 мм и длиною 1 метр нужен 0,03 м. Как это определили? 0,03 – это соотношение высоты уклона к длине трубы.
Важно: Максимальный уклон для канализационных труб не должен превышать 15 см на 1 метр (0,15). Исключением являются участки трубопроводов, длина которых меньше 1,5 метра. Другими словами, наш уклон всегда лежит в диапазоне от минимального (представленного на картинке выше) до 15 см (максимального)
Другими словами, наш уклон всегда лежит в диапазоне от минимального (представленного на картинке выше) до 15 см (максимального).
Уклон канализационной трубы 110 мм для наружной канализации
Предположим, нужно рассчитать оптимальный уклон для распространенной трубы 110 мм, которая используется в основном в системах наружной канализации. Согласно ГОСТ уклон для трубы диаметром 110 мм составляет 0,02 м на 1 метр погонный.
Чтобы рассчитать общий угол, нужно длину трубы умножить на уклон, указанный в СНиП или ГОСТ. Получится: 10 м (длина канализационной системы) * 0,02 = 0,2 м или 20 см. Значит разница между уровнем установки первой точки трубы и последней – 20 см.
Калькулятор расчет уклона канализации для частного дома
Предлагаю вам протестировать онлайн калькулятор расчета уклона канализационных труб для частного дома. Все расчеты носят примерный характер.
Диаметр трубы | 50мм110мм160мм200мм | Рассчитанный уклон:—
Рекомендуемый уклон:—— |
Выход из доманиже уровня земли | на глубине см | |
Глубина входа трубы в септик или центральную канализацию | см | |
Расстояние до септикат.е. длина трубы | м |
Под диаметром трубы понимается диаметр трубы, которая ведет сразу в сливную яму или общую систему канализацию (не путать с фановой).
ОБРАБОТКА КОНИЧЕСКИХ ПОВЕРХНОСТЕЙ
§ 1. Общие сведения 1. Область применения конусов. Наряду с цилиндрическими деталями в машиностроении получили довольно широкое распространение детали с коническими поверхностями. Примерами их могут служить конусы центров, хвостовиков сверл, зенкеров, разверток. Для крепления этих инструментов передние участки отверстий шпинделя и пиноли токарного станка имеют также коническую форму. Однако область использования конусов не ограничивается режущими инструментами. Конические поверхности имеют многие детали машин. Широкое использование конических соединений объясняется рядом их преимуществ. 1. Они обеспечивают высокую точность центрирования деталей. 2. При плотном соприкосновении пологих конусов получается неподвижное соединение. 3. Изменяя осевое положение деталей конического соединения, можно регулировать величину зазора между ними. 2. Конус и его элементы. Конус представляет собой геометрическое тело, поверхность которого получается вращением прямой линии (образующей), наклонно расположенной к оси вращения (рис. 129, а). Точка пересечения образующей с осью называется вершиной конуса. Плоскости, перпендикулярные к оси конуса, называются, основаниями. Различают полный и усеченный конусы. Первый расположен между основанием и вершиной, второй — между двумя основаниями (большим и меньшим). Конус характеризуется следующими элементами: диаметром большего основания D; диаметром меньшего основания d; длиной l; углом уклона а между образующей и осью конуса; углом конуса 2а между противоположными образующими. Кроме этого, на рабочих чертежах конических деталей часто употребляют понятия конусность и уклон. Конусностью называется отношение разности диаметров двух перечных сечений конуса к расстоянию между ними. Она опреляется по формуле Уклоном называется отношение разности радиусов двух поперечных сечений конуса к расстоянию между ними. Его определяют по формуле Из формул (9) и (10) видно, что уклон равен половине конусности. Тригонометрически уклон равен тангенсу угла уклона (см. рис. 129, б, треугольник ABC), т. е. На чертеже (рис. 130) конусность обозначают знаком <, а уклон —, острие которых направляется в сторону вершины конуса. После знака указывается отношение двух цифр. Первая из них соответствует разности диаметров в двух принятых сечениях конуса, вторая для конусности— расстояние между сечениями, для уклона — удвоенной величине этого расстояния. Конусность и уклон иногда записываются числами десятичной дроби: 6,02; 0,04; 0,1 и т. д. Для конусности эти цифры соответствуют разности диаметров конуса на длине 1 мм, для уклона — разности радиусов на этой же длине. Для обработки полного конуса достаточно знать два элемента: диаметр основания и длину; для усеченного конуса — три элемента: диаметры большего и меньшего оснований и длину. Вместо одного из указанных элементов может быть задан угол наклона а, уклон или конусность. В этом случае для определения недостающих размеров пользуются вышеприведенными формулами (9), (10) и (11). Пример 1. Дан конус, у которого d=30 мм, /=500 мм, К=1: 20. Определить больший диаметр конуса. Решение. Из формулы (9) Пример 2. Дан конус, у которого D=40 мм, l = 100 мм, а=5 , Определить меньший диаметр конуса. Решение. Из формулы (11) По таблице тангенсов находим tg5°=0,087. Следовательно, d=40—2*100Х Х0,87=22,6 мм. Пример 3. Определить угол уклона а, если на чертеже указаны размеры конуса: D—50 мм, d=30 мм, /=200 мм. Решение. По формуле (11) Из таблицы тангенсов находим а=2 50 . Пример 4. Дан конус, у которого D=60 мм, /=150 мм, К=1 : 50. Определить угол уклона а. Решение. Так как уклон равен половине конусности, можно записать: По таблице тангенсов находим а=0 30 . 3. Нормальные конусы. Конусы, размеры которых стандартизованы, называются нормальными. К ним относятся конусы Морзе, метрические, конусы для насадных разверток и зенкеров с конусностью 1:50 0, под конические штифты — с конусностью 1:50, для конических резьб с конусностью 1 : 16 и др. Наибольшее распространение в машиностроении получили инструментальные конусы Морзе и метрические, основные размеры которых приведены в табл. 13.
Размеры конусов Морзе выражаются дробными числами. Это объясняется тем, что впервые стандарт на них был принят в дюймовой системе измерения, которая сохранилась до настоящего времени. Конусы Морзе имеют различную конусность (примерно 1 20), метрические конусы одинаковую — 1:20. Автор — nastia19071991
Обозначение конусности на чертеже
При создании технической документации должны учитываться все установленные стандарты, так как в противном случае она не может быть использована в дальнейшем
Рассматривая обозначение конусности на чертежах следует уделить внимание следующим моментам:
- Отображается диаметр большого основания. Рассматриваемая фигура образуется телом вращения, которому свойственен диаметральный показатель. В случае конуса их может быть несколько, а изменение показателя происходит плавно, не ступенчато. Как правило, у подобной фигуры есть больший диаметр, а также промежуточной в случае наличия ступени.
- Наносится диаметр меньшего основания. Меньшее основание отвечает за образование требуемого угла.
- Рассчитывается длина конуса. Расстояние между меньшим и большим основанием является показателем длины.
- На основании построенного изображения определяется угол. Как правило, для этого проводятся соответствующие расчеты. В случае определения размера по нанесенному изображению при применении специального измерительного прибора существенно снижается точность. Второй метод применяется в случае создания чертежа для производства неответственных деталей.
Простейшее обозначение конусности предусматривает также отображения дополнительных размеров, к примеру, справочную. В некоторых случаях применяется знак конусности, который позволяет сразу понят о разности диаметров.
Выделяют достаточно большое количество различных стандартов, которые касаются обозначения конусности. К особенностям отнесем следующее:
- Угол может указываться в градусах дробью или в процентах. Выбор проводится в зависимости от области применения чертежа. Примером можно назвать то, что в машиностроительной области указывается значение градуса.
- В машиностроительной области в особую группу выделяют понятие нормальной конусности. Она варьирует в определенном диапазоне, может составлять 30, 45, 60, 75, 90, 120°. Подобные показатели свойственны большинству изделий, которые применяются при сборке различных механизмов. При этом выдержать подобные значения намного проще при применении токарного оборудования. Однако, при необходимости могут выдерживаться и неточные углы, все зависит от конкретного случая.
- При начертании основных размеров применяется чертежный шрифт. Он характеризуется довольно большим количеством особенностей, которые должны учитываться. Для правильного отображения используется табличная информация.
- Для начала указывается значок конусности от которого отводится стрелка и отображается величина. Особенности отображения во многом зависит от того, какой чертеж. В некоторых случаях наносится большое количество различных размеров, что существенно усложняет нанесение конусности. Именно поэтому предусмотрена возможность использования нескольких различных методов отображения подобной информации.
На чертеже рассматриваемый показатель обозначается в виде треугольника. При этом требуется цифровое значение, которое может рассчитываться при применении различных формул.
Колпак на дымоход своими руками
Хозяева домов зачастую прибегают к использованию элементов в виде различных колпаков и зонтов, служащих, как это кажется на первый взгляд, для украшения дымовых труб. В то же время такие насадки не только улучшают эстетическое восприятие строения, но и обеспечивают полезную функциональность. Обычно так называемый козырек для дымохода изготавливается собственными силами, так как для этого не требуется серьезных знаний и умений. Хотя наряду с простой конструкцией этих элементов встречаются достаточно замысловатые поделки, которые проблематично соорудить без соответствующего опыта.
Конструктивные особенности
Колпак на дымоход представляет собой устройство, предназначенное для защиты трубы от попадания влаги. Внешний вид таких козырьков может быть различен, что имеет зависимость как от предпочтений хозяина дома, так и от конфигурации трубы.
Колпаки на трубу дымохода включают в себя:
- зонтик – устанавливаемая на вершине колпака защита от осадков, посторонних предметов и проникновения птиц, внешний вид которой имеет форму пирамиды, конуса или соответствует другой геометрии;
- фартук – часть колпака, отвечающая за защиту верха трубы от стекающей с зонтика воды. Обычно установка этого элемента производится при оснащении прямоугольной или квадратной трубы. В результате гарантируется увеличение срока службы дымохода, так как удается практически исключить вероятность появления коррозии и грибка;
- кронштейны – крепежные элементы, представляющие собой металлические полоски, которые позволяют соединить козырек и фартук. Непосредственное крепление в данном случае производится за счет использования сварки.
Имейте в виду! Собрать колпак для дымохода вполне реально самому, но только в том случае, если вы хотите установить достаточно простой флюгарок. Модели, отличающиеся большей сложностью в плане конструктивных особенностей, гораздо выгоднее заказать или купить.
При наличии выбора лучше всего отдать предпочтение тем моделям, которые оборудованы открывающейся крышкой. Это позволит проводить профилактический осмотр дымохода и его чистку без каких-либо проблем, что связано с комфортом доступа.
Колпак на дымоход долгого срока использования может быть изготовлен только из железа, устойчивого к коррозии: оцинкованная сталь, алюминий и медь. В последнем случае предлагаемый металл обладает ярко выраженным декоративным характером, так как его переливы на солнце могут придать вашем дому определенную респектабельность.
Одевают оголовок на трубу дымохода чтобы гасить искры. Это одно из его предназначений. Поэтому качество железа должно быть хорошим, тем самым оно долго не прогорит.
Виды
В связи с тем, что дымоходы отличаются разнообразием форм и размеров, производители колпаков также предлагают широкий ассортимент продукции. Если вы решите украсить свое жилище и продлить срок жизни дымохода, то придется выбирать среди большого ассортимента флюгарок:
- Стандартные – зонт на дымоход в виде пирамидки, для изготовления которой используется листовой металл, а крепление к фартуку осуществляется посредством кронштейнов.
- Четырехскатные – устанавливается преимущественно на прямоугольные трубы, выполненные из кирпича. По форме соотносится с вальмовой крышей с четырьмя скатами.
- С полукруглым зонтиком – визуально отличается красотой, но обеспечивает недостаточную тягу. Преимущественно используется для установки на дымоходах домов, которые построены по европейским стандартам.
- Плоские – часто можно встретить на зданиях в стиле модерн. Имеет прямоугольную форму и отличается таким недостатком, как повышенная нагрузка на кронштейны, что в некоторых случаях приводит к их деформации. Это связано с плоской крышей колпака, которая не дает возможность скатываться снегу. Данный факт определяет возникновение упомянутой проблемы.
- Круглые с конусообразным зонтиком – модели без капельника, устанавливаемые на выполненные из нержавейки дымоходы круглого сечения.
Построение развертки конуса на бумаге
Для выполнения этой задачи понадобится лист бумаги, карандаш, транспортир, линейка и циркуль.
В первую очередь начертим прямоугольный треугольник со сторонами 3 см, 4 см и 5 см. Его вращение вокруг катета в 3 см даст искомый конус. У фигуры r = 3 см, h = 4 см, g = 5 см.
Построение развертки начнем с рисования циркулем окружности радиусом r. Ее длина будет равна 6*pi см. Теперь рядом с ней нарисуем еще одну окружность, но уже радиусом g. Ее длина будет соответствовать 10*pi см. Теперь нам нужно от большой окружности отрезать круговой сектор. Его угол φ равен:
φ = 2*pi*r/g = 2*pi*3/5 = 216o.
Теперь откладываем транспортиром этот угол на окружности с радиусом g и проводим два радиуса, которые будут ограничивать круговой сектор.
Таким образом, мы построили развертку конуса с указанными параметрами радиуса, высоты и образующей.
Для чего используется конус
Мы подробно разобрали самые простые варианты как сделать правильный конус из бумаги. Для чего используется эта поделка? Направления у нее самые различные:
- геометрических выставок;
- объемных поделок;
- изготовления маскарадных шляп.
Ваша фантазия подскажет вам, где еще может применяться конус. А мы поможем вам вдохновиться с помощью простой конусной поделки елочки.
Ёлка из конуса
Для нее потребуется:
- картон;
- бумага для подарков;
- скотч;
- декоративные предметы;
- ножницы.
В основе изделия, как вы уже поняли, лежит конус. Изготовьте его по одной из предложенных выше инструкций.
Далее работаем по схеме:
- Полученный конус, оборачиваем бумагой для подарков. Крепим кончик материала к верхушке скотчем и аккуратно оборачиваем бумагу по фигуре. Отрезаем лишний материал.
- Крепим концы с помощью скотча.
- Вы не поверите, но елочка готова. Осталось ее украсить как настоящую. С этой целью могут подойти пуговицы, большие бусины и миниатюрные новогодние игрушки.
В ёлке можно сделать отверстия. И если она достаточно широка, поместите внутрь конуса новогодние огоньки. В темноте, они будут приятно мелькать, создавая приятную атмосферу.
http://ngeometry.ru/postroenie-razvertki-konusa.htmlhttp://stroyday.ru/kalkulyatory/obshhestroitelnye-voprosy/kalkulyatory-rascheta-razmerov-razvertki-konusa.htmlhttp://megamaster.info/kak-sdelat-konus-iz-bumagi/
Для чего используется конус
Мы подробно разобрали самые простые варианты как сделать правильный конус из бумаги. Для чего используется эта поделка? Направления у нее самые различные:
- геометрических выставок;
- объемных поделок;
- изготовления маскарадных шляп.
Ваша фантазия подскажет вам, где еще может применяться конус. А мы поможем вам вдохновиться с помощью простой конусной поделки елочки.
Ёлка из конуса
Для нее потребуется:
- картон;
- бумага для подарков;
- скотч;
- декоративные предметы;
- ножницы.
В основе изделия, как вы уже поняли, лежит конус. Изготовьте его по одной из предложенных выше инструкций.
Далее работаем по схеме:
- Полученный конус, оборачиваем бумагой для подарков. Крепим кончик материала к верхушке скотчем и аккуратно оборачиваем бумагу по фигуре. Отрезаем лишний материал.
- Крепим концы с помощью скотча.
- Вы не поверите, но елочка готова. Осталось ее украсить как настоящую. С этой целью могут подойти пуговицы, большие бусины и миниатюрные новогодние игрушки.
В ёлке можно сделать отверстия. И если она достаточно широка, поместите внутрь конуса новогодние огоньки. В темноте, они будут приятно мелькать, создавая приятную атмосферу.
https://ngeometry.ru/postroenie-razvertki-konusa.htmlhttps://stroyday.ru/kalkulyatory/obshhestroitelnye-voprosy/kalkulyatory-rascheta-razmerov-razvertki-konusa.htmlhttps://megamaster.info/kak-sdelat-konus-iz-bumagi/
Уклоны и конусность — Техническое черчение
- Уклоном прямой ВС относительно прямой AB (фиг. 57, а) называется отношение:
- i=AC/AB=tga
- Конусностью называется отношение разности диаметров двух поперечных сечений конуса к расстоянию между ними (фиг. 57,б)
- k=(D-d)/l=2tga
- Таким образом,
- k = 2i
- Уклон и конусность могут быть указаны: а) в градусах; б) дробью простой, в виде отношения двух чисел или десятичной; в) в процентах.
- Например: конусность, выраженная в градусах — 11°25’16″; отношением — 1:5; дробью —0,2; в процентах — 20%, и соответственно этому уклон в градусах — 5°42’38″; отношением — 1:10; дробью—0,1; в процентах — 10%.
- Для конусов, применяемых в машиностроении, OCT/BKC 7652 устанавливает следующий ряд нормальных конусностей — 1 :3; 1 :5; 1 :8; 1 : 10; 1 :15; 1:20; 1 :30; 1:50; 1 :100; 1:200, а также 30, 45, 60, 75, 90 и 120°.
- Допускаются в особых случаях также конусности 1:1,5; 1:7; 1:12 и 110°.
Если требуется через точку Л, лежащую на прямой AB (фиг. 57, в), провести прямую с уклоном i=l:n относительно AB, надо отложить от точки А по направлению данной прямой n произвольных единиц; в конце полученного отрезка AB восстановить перпендикуляр ЕС длиной в одну такую же единицу. Гипотенуза AС построенного прямоугольного треугольника определяет искомую прямую.
- Для проведения прямой заданного уклона l:n через точку M, не лежащую на данной прямой AB, можно поступать двояко (фиг. 58):
- 1) построить в стороне прямоугольный треугольник KLN (или KLN1) с отношением катетов l:n, причём катет KL ll AB; затем через точку M провести искомую прямую MD (или MD1) параллельно гипотенузе вспомогательного треугольника KN (или LN1);
2) опустить из точки M перпендикуляр ME на прямую AВ и принять его за единицу. По направлению прямой AB влево или вправо от точки E отложить n таких же отрезков; гипотенузы DM или MD1 построенных таким образом прямоугольных треугольников являются искомыми прямыми.
Построение конусности l:n относительно данной оси сводится к построению уклонов l:n/2 с каждой стороны оси.
Уклон или конусность чаще всего указывается в процентах или отношением единицы к целому числу. Рассмотрим эти способы построения на примерах.
Пример 1. Требуется построить профиль сечения швеллера № 5 ОСТ 10017-39 (фиг. 59, а), если известно, что уклон его полок равен 10%
Размеры для построения берём из ОСТ 10017-39.
Проводим вертикальную прямую ek, равную h = 50 мм. Из точек e и k проводим прямые ec и kf, равные ширине полки b = 37 мм.
Ввиду того, что обе полки швеллера одинаковы, ограничимся построением только одной из них. Откладываем на прямой ec от точки с отрезок cm, равный (b-d)/2.
В точке m на перпендикуляре к прямой ec откладываем отрезок mn, равный t = 7 мм. Через точку n проводим прямую np параллельно ec, равную 50 мм.
- Перпендикулярно к np из точки p проводим отрезок ps, равный по длине десяти процентам отрезка np. Величина его определяется из отношения:
- ps/np=10/100,
- откуда
- ps=10*50/100=5 мм.
Прямая sn является искомой прямой, имеющей уклон 10% по отношению к ec. Дальнейшее построение профиля не представляет затруднений.
Отрезок np можно взять любой длины. Чем больше его величина, тем точнее будет построена прямая уклона. Однако для удобства вычисления следует принимать отрезок np таким, чтобы длина его, выражаемая в миллиметрах, оканчивалась на 0 или 5.
П p и м e p 2. Построить профиль сечения двутавра № 10 ОСТ 10016-39 (фиг. 59, б), если известно, что уклон полок его равен 1:6. Размеры для построения берём из ОСТ 10016-39.
Проводим горизонтальную прямую cc, равную ширине полки b = = 68 мм. Через точку e, являющуюся серединой ширины полки, проводим вертикальную линию. Откладываем от точки с отрезок mс, равный
(b-d)/4. В точке m, перпендикулярно к отрезку cc, проводим прямую и
на ней откладываем отрезок mn, равный t=6,5 мм. Через точку n проводим горизонтальную прямую np, равную 30 мм, которая будет служить катетом прямоугольного треугольника. Чем длиннее катет, тем точнее будет построен уклон. Для удобства принимают длину отрезка np кратной шести, тогда второй катет будет равен целому числу. Величина второго катета определяется из формулы
- i=ps/np=1/6
- где i — заданный уклон.
- Подставив в формулу числовые значения, получим
- ps=30/6=5 мм.
Откладываем в точке p под углом 90° к прямой np вычисленную длину второго катета, получим точку 5. Проводим через точки s и n прямую, которая и будет соответствовать искомой прямой, имеющей уклон 1 :6.
Построение сопряжений такое же, как и для швеллера в предыдущем примере.
Вид развертки конуса
Как можно догадаться, конус образован двумя типами поверхностей. Одна из них — это плоский круг основания. Предположим, что он имеет радиус r. Вторая поверхность является боковой и называется конической. Пусть ее образующая будет равна g.
Если у нас имеется бумажный конус, то можно взять ножницы и отрезать от него основание. Затем, коническую поверхность следует разрезать вдоль любой образующей и развернуть ее на плоскости. Таким способом мы получили развертку боковой поверхности конуса. Две поверхности вместе с исходным конусом показаны на схеме ниже.
Внизу справа изображен круг основания. По центру показана развернутая коническая поверхность. Оказывается, что она соответствует некоторому круговому сектору круга, радиус которого равен длине образующей g.
Вид развертки конуса
Как можно догадаться, конус образован двумя типами поверхностей. Одна из них — это плоский круг основания. Предположим, что он имеет радиус r. Вторая поверхность является боковой и называется конической. Пусть ее образующая будет равна g.
Если у нас имеется бумажный конус, то можно взять ножницы и отрезать от него основание. Затем, коническую поверхность следует разрезать вдоль любой образующей и развернуть ее на плоскости. Таким способом мы получили развертку боковой поверхности конуса. Две поверхности вместе с исходным конусом показаны на схеме ниже.
Внизу справа изображен круг основания. По центру показана развернутая коническая поверхность. Оказывается, что она соответствует некоторому круговому сектору круга, радиус которого равен длине образующей g.
Угол и площадь развертки
Теперь получим формулы, которые по известным параметрам g и r позволяют рассчитать площадь и угол развертки конуса.
Очевидно, что дуга кругового сектора, показанного выше на рисунке, имеет длину, равную длине окружности основания, то есть:
Если бы весь круг радиусом g был построен, то его бы длина составила:
Поскольку длина L соответствует 2*pi радианам, тогда угол, на который опирается дуга l, можно определить из соответствующей пропорции:
Тогда неизвестный угол φ будет равен:
Подставляя выражения для длин l и L, приходим к формуле для угла развертки боковой поверхности конуса:
Угол φ здесь выражен в радианах.
Для определения площади Sb кругового сектора воспользуемся найденным значением φ. Составляем еще одну пропорцию, только уже для площадей. Имеем:
Откуда следует выразить Sb, а затем, подставить значение угла φ. Получаем:
Для площади конической поверхности мы получили достаточно компактную формулу. Величина Sb равна произведению трех множителей: числа пи, радиуса фигуры и ее образующей.
Тогда площадь всей поверхности фигуры будет равна сумме Sb и So (площадь круглого основания). Получаем формулу:
Получение фигуры с помощью вращения
Перед тем как перейти к рассмотрению развертки поверхности конуса, полезно узнать, как с помощью вращения можно получить эту пространственную фигуру.
Предположим, что у нас имеется прямоугольный треугольник со сторонами a, b, c. Первые две из них являются катетами, c — это гипотенуза. Поставим треугольник на катет a и начнем его вращать вокруг катета b. Гипотенуза c при этом опишет коническую поверхность. Эта простая методика получения конуса изображена ниже на схеме.
Очевидно, что катет a будет радиусом основания фигуры, катет b — его высотой, а гипотенуза c соответствует образующей круглого прямого конуса.
Калькуляторы расчета размеров развертки конуса — с пояснениями
Иногда в ходе выполнения тех или иных хозяйственных работ мастер встаёт перед проблемой изготовления конуса – полного или усеченного. Это могут быть операции, скажем, с тонким листовым металлом, эластичным пластиком, обычной тканью или даже бумагой или картоном. А задачи встречаются самый разные – изготовление кожухов, переходников с одного диаметра на другой, козырьков или дефлекторов для дымохода или вентиляции, воронок для водостоков, самодельного абажура. А может быть даже просто маскарадного костюма для ребенка или поделок, заданных учителем труда на дом.
Калькуляторы расчета размеров развертки конуса
Чтобы из плоского материала свернуть объёмную фигуру с заданными параметрами, необходимо вычертить развертку. А для этого требуется рассчитать математически и перенести графически необходимые точные размеры этой плоской фигуры. Как это делается – рассмотрим в настоящей публикации. Помогут нам в этом вопросе калькуляторы расчета размеров развертки конуса.
Несколько слов о рассчитываемых параметрах
Понять принцип расчета будет несложно, разобравшись со следующей схемой:
Усеченный конус с определяющими размерами и его развёртка. Показан усеченный конус, но с полным — принцип не меняется, а расчеты и построение становятся даже проще.
Итак, сам конус определяется радиусами оснований (нижней и верхней окружности) R1 и R2, и высотой Н. Понятно, что если конус не усеченный, то R2 просто равно нулю.
Буквой L обозначена длина боковой стороны (образующей) конуса. Она в некоторых случаях уже известна – например, требуется сделать конус по образцу или выкроить материал для обтяжки уже имеющегося каркаса. Но если она неизвестна – не беда, ее несложно рассчитать.
Справа показана развёртка. Она для усеченного конуса ограничена сектором кольца, образованного двумя дугами, внешней и внутренней, с радиусами Rb и Rs. Для полного конуса Rs также будет равен нулю. Хорошо видно, что Rb = Rs + L
Угловую длину сектора определяет центральный угол f, который в любом случае предстоит рассчитать.
Все расчеты займут буквально минуту, если воспользоваться предлагаемыми калькуляторами:
(Если она уже известна – шаг пропускается)
Перейти к расчётам
Шаг 3 – определение величины центрального угла f
Перейти к расчётам
* * * * * * *
Итак, все данные имеются. Остается на листе бумаги циркулем провести две дуги рассчитанных радиусов. А затем из точки центра с помощью транспортира прочертить два луча под рассчитанным углом – они ограничат развертку по угловой длине.
Существуют и чисто геометрические методы построения довольно точной развертки конуса, без проведения расчётов. Один из них подробно описан в статье нашего портала «Как сделать абажур своими руками».
stroyday.ru
Изготовление конусов
Уральский завод специальных конструкций производит конуса, которые служат для перехода трубопровода из одного диаметра в другой. Также их используют, как часть свариваемых емкостей и других конструкций в производстве. Они представляют собой стальной урезанный с узкой стороны конус.
Этапы изготовления
Клиент, делая заказ, указывает диаметры торцов и высоту готового изделия. С этими данными начинается изготовление конуса. Делается расчет линейных размеров и чертеж раскроя. От их точности зависит правильность формы готовой детали.
Раскрой заготовки
Для изготовления конусных обечаек используется прокатные стальные листы. Они могут быть как цельные (с одним швом), так и сваренные из нескольких сегментов по ГОСТ Р 52630-2012. Если заготовки состоят из одной части в форме подковы, они не могут быть больше определенного размера, ограниченного форматом листа.
Максимальный размер стандартного листового проката – 200х600 см. При необходимости используется специальный прокат – 500х1200 см. Из него можно вырезать заготовку для конуса с диаметром большого отверстия 380 см и высотой 300 см. Программу раскроя вводят в ЧПУ станка. Далее производится плазменная или лазерная резка металла с последующей обработкой торцов. Также может использоваться кислородная и дуговая резка.
Вальцовка заготовок
Конусные обечайки можно изготавливать несколькими способами:
- холодная вальцовка;
- горячая вальцовка;
- холодная штамповка.
Для холодной и горячей вальцовки используется листогибочный станок (вальц). Заготовку пропускают между несколькими валиками разного диаметра. Для упора на валике должен быть установлен торцевой ролик, ограничивающий сдвиг листа по оси. При этом минимальный размер окружности задает диаметр верхнего валика станка, а максимальный может быть любым. Толщина стенки также ограничивается возможностями машины. Высота обрабатываемой обечайки зависит от длины валиков.
Горячую вальцовку применяют, когда используемый металл не имеет достаточной пластичности и может деформироваться при холодной обработке. Его разогревают газовыми горелками и только после этого подают на листогибочную машину.
Холодная штамповка
С помощью гидравлического пресса из стальных листов штампуются бесшовные конические обечайки. Нужная форма достигается в несколько приемов. Такая технология позволяет одновременно, используя специальную оснастку, добавлять правильному конусу необходимые дополнительные типоразмеры.
Сварка
После холодной и горячей вальцовки получаются изогнутые стальные пластины, из которых необходимо сварить конусы. Любой сварке предшествует обработка (разделка) торцов металла. Эта операция проводится сразу после резки.
Согнутые заготовки свариваются в конус с помощью сварочных автоматов DIGITECH VISION. Для сохранения дуги во избежание прямых участков на линиях стыковок используют специальные стыковочные планки.
По окончании сварных работ швы зачищаются и проверяются:
- ультразвуком;
- радиографически.
Делаются контрольные замеры полученного конуса.
Дополнительная обработка
Конструкторская документация и ГОСТ Р 52630-2012 требуют дополнительных воздействий на готовые изделия. Например, термическая обработка придает обечайкам нужные им свойства. Механические операции, а именно, обработка торцов для приварки днища, штуцера, отвода и других деталей проводится на конусах, используемых в изготовлении емкостей и аппаратов.
Все работы выполняются, согласно техническим условия, требованиям ГОСТа, что гарантирует высокое качество и долгую безотказную работы конусных обечаек.