Расчет площади воздуховодов и фасонных изделий: правила вычислений и примеры
Содержание:
- Расчет воздуховодов или проектирование систем вентиляции
- Особенности определения длины вентиляционных труб
- Пример расчета вентиляции с помощью калькулятора
- Как определить потери давления
- Расчет воздуховодов вентиляции
- Определение потери давления после расчета площади воздуховода
- Основные формулы аэродинамического расчета
- Цель выполнения расчетов
- Общие требования
- Расчёт площади фасонных частей воздуховодов
- Классы плотности
Расчет воздуховодов или проектирование систем вентиляции
В создании оптимального микроклимата помещений наиболее важную роль играет вентиляция. Именно она в значительной степени обеспечивает уют и гарантирует здоровье находящихся в помещении людей. Созданная система вентиляции позволяет избавиться от множества проблем, возникающих в закрытом помещении: от загрязнения воздуха парами, вредными газами, пылью органического и неорганического происхождения, избыточным теплом. Однако предпосылки хорошей работы вентиляции и качественного воздухообмена закладываются задолго до сдачи объекта в эксплуатацию, а точнее, на стадии создания проекта вентиляции. Производительность систем вентиляции зависит от размеров воздуховодов, мощности вентиляторов, скорости движения воздуха и других параметров будущей магистрали. Для проектирования системы вентиляции необходимо осуществить большое количество инженерных расчетов, которые учтут не только площадь помещения, высоту его перекрытий, но и множество других нюансов.
Расчет площади сечения воздуховодов
После того, как вы определили производительность вентиляции, можно переходить к расчету размеров (площади сечения) воздуховодов.
Расчет площади воздуховодов определяется по данным о необходимом потоке, подаваемом в помещение и по максимально допустимой скорости потока воздуха в канале. Если допустимая скорость потока будет выше нормы, то это приведет к потере давления на местные сопротивления, а также по длине, что повлечет за собой увеличение затрат электроэнергии. Также правильный расчет площади сечения воздуховодов необходим для того, чтобы уровень аэродинамического шума и вибрация не превышали норму.
При расчете нужно учитывать, что если вы выберете большую площадь сечения воздуховода, то скорость воздушного потока снизится, что положительно повлияет и на снижение аэродинамического шума, а также на затраты по электроэнергии. Но нужно знать, что в этом случае стоимость самого воздуховода будет выше. Однако использовать «тихие» низкоскоростные воздуховоды большого сечения не всегда возможно, так как их сложно разместить в запотолочном пространстве. Уменьшить высоту запотолочного пространства позволяет применение прямоугольных воздуховодов, которые при одинаковой площади сечения имеют меньшую высоту, чем круглые (например, круглый воздуховод диаметром 160 мм имеет такую же площадь сечения, как и прямоугольный размером 200×100 мм). В то же время монтировать сеть из круглых гибких воздуховодов проще и быстрее.
Поэтому при выборе воздуховодов обычно подбирают вариант, наиболее подходящий и по удобству монтажа, и по экономической целесообразности.
Площадь сечения воздуховода определяется по формуле:
Sс = L * 2,778 / V, где
Sс — расчетная площадь сечения воздуховода, см²;
L — расход воздуха через воздуховод, м³/ч;
V — скорость воздуха в воздуховоде, м/с;
2,778 — коэффициент для согласования различных размерностей (часы и секунды, метры и сантиметры).
Итоговый результат мы получаем в квадратных сантиметрах, поскольку в таких единицах измерения он более удобен для восприятия.
Фактическая площадь сечения воздуховода определяется по формуле:
S = π * D² / 400 — для круглых воздуховодов,
S = A * B / 100 — для прямоугольных воздуховодов, где
S — фактическая площадь сечения воздуховода, см²;
D — диаметр круглого воздуховода, мм;
A и B — ширина и высота прямоугольного воздуховода, мм.
Расчет сопротивления сети воздуховодов
После того как вы рассчитали площадь сечения воздуховодов, необходимо определить потери давления в вентиляционной сети (сопротивление водоотводной сети). При проектировании сети необходимо учесть потери давления в вентиляционном оборудовании. Когда воздух движется по воздуховодной магистрали, он испытывает сопротивление. Для того чтобы преодолеть это сопротивление, вентилятор должен создавать определенное давление, которое измеряется в Паскалях (Па). Для выбора приточной установки нам необходимо рассчитать это сопротивление сети.
Для расчета сопротивления участка сети используется формула:
Где R – удельные потери давления на трение на участках сети
L – длина участка воздуховода (8 м)
Еi – сумма коэффициентов местных потерь на участке воздуховода
V – скорость воздуха на участке воздуховода, (2,8 м/с)
Y – плотность воздуха (принимаем 1,2 кг/м3).
Значения R определяются по справочнику (R – по значению диаметра воздуховода на участке d=560 мм и V=3 м/с). Еi – в зависимости от типа местного сопротивления.
В качестве примера, результаты расчета воздуховода и сопротивления сети приведены в таблице:
Особенности определения длины вентиляционных труб
Еще одним важным параметром при проектировании систем вентиляции является длина наружной трубы. Она объединяет все находящиеся в доме каналы, по которым осуществляется циркуляция воздуха, и служит для его вывода наружу.
Расчет по таблице
Высота вентиляционной трубы зависит от ее диаметра и определяется по таблице. В ее ячейках указано сечение воздуховодов, а в столбце слева — ширина труб. Их высота указывается в верхней строке и обозначается в мм.
Подбор высоты трубы вентиляции по таблице
При этом нужно учитывать:
- Если вентиляционная труба находится рядом с дымовой, то их высота должна совпадать, чтобы избежать проникновения дыма внутрь помещений во время отопительного сезона.
- При расположении воздуховода от конька или парапета на расстоянии, которое не превышает 1,5 м, его высота должна быть больше 0,5 м. Если труба находится в пределах от 1,5 до 3 м от конька крыши, то она не может быть ниже его.
- Высота вентиляционной трубы над крышей плоской формы не может быть меньше 0,5 м.
Расположение вентиляционных труб относительно конька крыши
При выборе трубы для сооружения вентиляции и определения ее месторасположения необходимо предусмотреть достаточное сопротивление ветру. Она должна выдерживать шторм в 10 баллов, что составляет 40-60 кг на 1 м2 поверхности.
Использование программного обеспечения
Пример расчета естественной вентиляции с помощью специальных программ
Расчет естественной вентиляции менее трудоемок, если воспользоваться для этого специальной программой. Для этого сначала определяется оптимальный объем притока воздуха, в зависимости от назначения помещения. Затем на основании полученных данных и особенностей проектируемой системы делают расчет вентиляционной трубы. При этом программа позволяет учитывать:
- среднюю температуру внутри и снаружи;
- геометрическую форму воздуховодов;
- шероховатость внутренней поверхности, которая зависит от материала труб;
- сопротивление движению воздуха.
Система вентиляции с трубами круглого сечения
В результате получают необходимые размеры вентиляционных труб для сооружения инженерной системы, которая должна обеспечивать циркуляцию воздуха в определенных условиях.
В процессе расчета параметров вентиляционной трубы следует обращать внимание и на локальное сопротивление при циркуляции воздуха. Оно может возникать из-за наличия сеток, решеток, отводов и других особенностей конструкции. Правильный расчет параметров вентиляционных труб позволит спроектировать и построить эффективную систему, которая даст возможность контролировать уровень влажности в помещениях и обеспечит комфортные условия для проживания
Правильный расчет параметров вентиляционных труб позволит спроектировать и построить эффективную систему, которая даст возможность контролировать уровень влажности в помещениях и обеспечит комфортные условия для проживания.
Пример расчета вентиляции с помощью калькулятора
На этом примере мы покажем, как рассчитать приточную вентиляцию для 3-х комнатной квартиры, в которой живет семья из трех человек (двое взрослых и ребенок). Днем к ним иногда приезжают родственники, поэтому в гостиной может длительное время находиться до 5 человек. Высота потолков квартиры — 2,8 метра. Параметры помещений:
Нормы расхода для спальни и детской зададим в соответствии с рекомендациями СНиП — по 60 м³/ч на человека. Для гостиной ограничимся 30 м³/ч, поскольку большое количество людей в этой комнате бывает нечасто. По СНиП такой расход воздуха допустим для помещений с естественным проветриванием (для проветривания можно открыть окно). Если бы мы и для гостиной задали расход воздуха 60 м³/ч на человека, то требуемая производительность для этого помещения составила бы 300 м³/ч. Стоимость электроэнергии для нагрева такого количества воздуха оказалась бы очень высокой, поэтому мы пошли на компромисс между комфортом и экономичностью. Для расчета воздухообмена по кратности для всех помещений выберем комфортный двукратный воздухообмен.
Магистральный воздуховод будет прямоугольным жестким, ответвления — гибкими шумоизолированными (такое сочетание типов воздуховодов не самое распространенное, но мы выбрали его в демонстрационных целях). Для дополнительной очистки приточного воздуха будет установлен угольно-пылевой фильтр тонкой очистки класса EU5 (расчет сопротивления сети будем вести при загрязненных фильтрах). Скорости воздуха в воздуховодах и допустимый уровень шума на решетках оставим равными рекомендуемым значениям, которые заданы по умолчанию.
Расчет начнем с составления схемы воздухораспределительной сети. Эта схема позволит нам определить длину воздуховодов и количество поворотов, которые могут быть как в горизонтальной, так и вертикальной плоскости (нам нужно посчитать все повороты под прямым углом). Итак, наша схема:
Сопротивление воздухораспределительной сети равно сопротивлению самого длинного участка. Этот участок можно разделить на две части: магистральный воздуховод и самое длинное ответвление. Если у вас есть два ответвления примерно одинаковой длины, то нужно определить, какое из них имеет большее сопротивление. Для этого можно принять, что сопротивление одного поворота равно сопротивлению 2,5 метров воздуховода, тогда наибольшее сопротивление будет иметь ответвление, у которого значение (2,5* кол-во поворотов + длина воздуховода) максимально. Выделять из трассы две части необходимо для того, чтобы можно было задать разный тип воздуховодов и разную скорость воздуха для магистрального участка и ответвлений.
В нашей системе на всех ответвлениях установлены балансировочные дроссель-клапаны , позволяющие настроить расходы воздуха в каждом помещении в соответствии с проектом. Их сопротивление (в открытом состоянии) уже учтено, поскольку это стандартный элемент вентиляционной системы.
Длина магистрального воздуховода (от воздухозаборной решетки до ответвления в помещение № 1) — 15 метров, на этом участке есть 4 поворота под прямым углом. Длину приточной установки и воздушного фильтра можно не учитывать (их сопротивление будет учтено отдельно), а сопротивление шумоглушителя можно принять равным сопротивлению воздуховода той же длины, то есть просто посчитать его частью магистрального воздуховода. Длина самого длинного ответвления составляет 7 метров, на нем есть 3 поворота под прямым углом (один — в месте ответвления, один — в воздуховоде и один — в адаптере). Таким образом, мы задали все необходимые исходные данные и теперь можем приступать к расчетам (скриншот). Результаты расчета сведены в таблицы:
Результаты расчета по помещениям
Как определить потери давления
Расчет сопротивления сети позволяет принять во внимание потери давления. Поток воздуха, во время движения, испытывает определенное сопротивление
Для его преодоления важно соответствующее давление. Давление это измеряется в Па
Для того чтобы узнать нужный параметр, потребуется следующая формула:
P = R * L + Ei * V2 * Y/2
R здесь – удельные сокращения давления на трение в сети; L – протяженность воздуховодов; Ei – коэффициент местных потерь в сети в сумме; V – скорость воздуха на рассматриваемом участке сети; Y – плотность воздуха. R можно узнать в соответствующем справочнике. Ei зависит от местного сопротивления.
Расчет воздуховодов вентиляции
При устройстве системы вентиляции важно правильно подобрать и определить параметры всех элементов системы. Необходимо найти требуемое количество воздуха, подобрать оборудование, рассчитать воздуховоды, фасонные элементы и другие комплектующие вентиляционной сети. Как проводится расчет воздуховодов вентиляции? Что влияет на их размер и сечение? Разберем этот вопрос подробнее
Как проводится расчет воздуховодов вентиляции? Что влияет на их размер и сечение? Разберем этот вопрос подробнее.
Воздуховоды необходимо рассчитывать с двух точек зрения. Во-первых, подбирается необходимое сечение и форма. При этом необходимо учитывать количество воздуха и другие параметры сети. Также уже при изготовлении рассчитывается количество материала, например, жести, для изготовления труб и фасонных элементов. Такой расчет площади воздуховодов позволяет заранее определить количество и стоимость материала.
Типы воздуховодов
Для начала пару слов скажем и материалах и типах воздуховодов
Это важно из-за того, что в зависимости от формы воздуховодов существуют особенности его расчета и выбора площади поперечного сечения. Также важно ориентироваться и на материал, так как от него зависит особенности движения воздуха и взаимодействие потока со стенками. Если коротко, то воздуховоды бывают:
Если коротко, то воздуховоды бывают:
- Металлические из оцинкованной или черной стали, нержавейки.
- Гибкие из алюминиевой или пластиковой пленки.
- Жесткие пластиковые.
- Тканевые.
По форме воздуховоды изготовливаются круглого сечения, прямоугольного и овального. Наиболее часто используются круглые и прямоугольные трубы.
Большая часть из описанных воздуховодов изготовливаются в заводских условиях, например, гибкие из пластика или тканевые, и изготовить их на объекте или в небольшой мастерской сложно. Большая часть изделий, которым требуется расчет, производят из оцинкованной стали или нержавейки.
Из оцинкованной стали изготовляются как прямоугольные, так и круглые воздуховоды, причем для производства не требуется особо дорогостоящее оборудование. В большинстве случаев достаточно гибочного станка и устройства для изготовления круглых труб. Не считая мелкого ручного инструмента.
Расчет поперечного сечения воздуховода
Основная задача, которая возникает при расчете воздуховодов – это выбор поперечного сечения и формы изделия. Этот процесс проходит при проектировании системы как в специализированных компаниях, так и при самостоятельном изготовлении. Необходимо провести расчет диаметра воздуховода или сторон прямоугольника, выбрать оптимальное значение площади поперечного сечения.
Расчет поперечного сечения проводят двумя способами:
- допустимых скоростей;
- постоянной потери давления.
Метод допустимых скоростей проще для неспециалистов, поэтому рассмотрим в общих чертах его.
Расчет сечения воздуховодов методом допустимых скоростей
Расчет сечения воздуховода вентиляции методом допустимых скоростей базируется на нормированной максимальной скорости. Скорость выбирается для каждого типа помещения и участка воздуховода в зависимости от рекомендуемых значений. Для каждого типа здания существуют максимально допустимые скорости в магистральных воздуховодах и ответвлениях, выше которых использование системы затруднено из-за шума и сильных потерь давления.
Рис. 1 (Схема сети для расчета)
В любом случае, перед началом расчета необходимо составить план системы. Для начала необходимо рассчитать требуемое количество воздуха, которое нужно подать и удалить из помещения. На этом расчете будет базироваться дальнейшая работа.
Сам процесс расчета сечения методом допустимых скоростей упрощенно состоит из таких этапов:
- Создается схема воздуховодов, на которой отмечаются участки и расчетное количество воздуха, которое будет по ним транспортироваться. Лучше на ней же указать все решетки, диффузоры, изменения сечения, повороты и клапаны.
- По подобранной максимальной скорости и количеству воздуха рассчитывается сечение воздуховода, его диаметр или размер сторон прямоугольника.
- После того, как известны все параметры системы, можно подобрать вентилятор необходимой производительности и напора. Подбор вентилятора базируется на расчете падения давления в сети. Это существенно сложнее, чем просто подобрать сечение воздуховода на каждом участке. Этот вопрос мы рассмотрим в общих чертах. Так как иногда просто подбирают вентилятор с небольшим запасом.
Для расчета необходимо знать параметры максимальной скорости воздуха. Их берут из справочников и нормативной литературы. В таблице приведены значения для некоторых зданий и участков системы.
Определение потери давления после расчета площади воздуховода
При увеличении диаметра воздуховода давление в нем падает
Потери давления высчитываются после подсчета площади трубопроводов, скорости обмена воздуха и сопротивления инженерной коммуникации. Такой показатель влияет на подбор вентилятора по мощности.
Используется формула P = R · L + E · V · Y / 2, где:
- P — потери давления (Па);
- R — удельный показатель давления трением при взаимодействии воздуха с внутренними стенками (Па/м);
- L — длина расчетного участка (м);
- E — числовой индекс потерь напора на участке в сумме;
- V — скорость потока в искомом месте (м/с);
- Y — плотность атмосферы (кг/м3).
Потеря давления определяется с применением справочника. Коэффициент E имеет прямую зависимость от параметров участка, где делается вычисление.
Основные формулы аэродинамического расчета
Первым делом необходимо сделать аэродинамический расчет магистрали. Напомним что магистральным воздуховодом считается наиболее длинный и нагруженный участок системы. За результатами этих вычислений и подбирается вентилятор.
Только не забывайте об увязке остальных ветвей системы
Это важно! Если нет возможности произвести увязку на ответвлениях воздуховодов в пределах 10% нужно применять диафрагмы. Коэффициент сопротивления диафрагмы рассчитывается за формулой:
Если неувязка будет больше 10%, когда горизонтальный воздуховод входит в вертикальный кирпичный канал в месте стыковки необходимо разместить прямоугольные диафрагмы.
Основная задача расчета состоит из нахождения потерь давления. Подбирая при этом оптимальный размер воздуховодов и контролирую скорость воздуха. Общие потери давления представляют собой сумму двух компонентов — потерь давления по длине воздуховодов (на трение) и потерь в местных сопротивлениях. Расчитываются они по формулам
Эти формулы правильны для стальных воздуховодов, для всех остальных вводится коэффициент поправки. Он берется из таблицы в зависимости от скорости и шероховатости воздуховодов.
Для прямоугольных воздухопроводов расчетной величиной принимается эквивалентный диаметр.
Рассмотрим последовательность аэродинамического расчета воздуховодов на примере офисов, приведенных в предыдущей статье, по формулам. А затем покажем как он выглядит в программке Excel.
Пример расчета
По расчетам в кабинете воздухообмен составляет 800 м3/час. Задание было запроектировать воздуховоды в кабинетах не больше 200 мм высотой. Размеры помещения даны заказчиком. Воздух подается при температуре 20°С, плотность воздуха 1,2 кг/м3.
Проще будет если результаты заносить в таблицу такого вида
Сначала мы сделаем аэродинамический расчет главной магистрали системы. Теперь все по-порядку:
Разбиваем магистраль на участки по приточным решеткам. У нас в помещении восемь решеток, на каждую приходится по 100 м3/час. Получилось 11 участков. Вводим расход воздуха на каждом участке в таблицу.
- Записываем длину каждого участка.
-
Рекомендуемая максимальная скорость внутри воздуховода для офисных помещений до 5 м/с. Поэтому подбираем такой размер воздуховода, чтобы скорость увеличивалась по мере приближения к вентиляционному оборудованию и не превышала максимальную. Это делается для избежания шума в вентиляции. Возьмем для первого участка берем воздуховод 150х150, а для последнего 800х250.
V1=L/3600F =100/(3600*0,023)=1,23 м/с.
V11= 3400/3600*0,2= 4,72 м/с
Нас результат устраивает. Определяем размеры воздуховодов и скорость по этой формуле на каждом участке и вносим в таблицу.
- Начинаем расчеты потерь давления. Определяем эквивалентный диаметр для каждого участка, например первого dэ=2*150*150/(150+150)=150. Затем заполняем все данные необходимые для расчета из справочной литературы или вычисляем: Re=1,23*0,150/(15,11*10^-6)=12210. λ=0,11(68/12210+0,1/0,15)^0,25=0,0996 Шероховатость разных материалов разная.
- Динамическое давление Pд=1,2*1,23*1,23/2=0,9 Па тоже записывается в столбец.
- Из таблицы 2.22 определяем удельные потери давления или рассчитываем R=Pд*λ/d= 0,9*0,0996/0,15=0,6 Па/м и заносим в столбик. Затем на каждом участке определяем потери давления на трение: ΔРтр=R*l*n=0,6*2*1=1,2 Па.
- Коэффициенты местных сопротивлений берем из справочной литературы. На первом участке у нас решетка и увеличение воздуховода в сумме их КМС составляет 1,5.
- Потери давления в местных сопротивлениях ΔРм=1,5*0,9=1.35 Па
- Находим суму потерь давления на каждом участке = 1.35+1.2=2,6 Па. А в итоге и потери давления во всей магистрали = 185,6 Па. таблица к тому времени будет иметь вид
Далее производится по тому же методу расчет остальных ветвей и их увязка. Но об этом поговорим отдельно.
Цель выполнения расчетов
Особенности расчета и выбора воздуховодов зависят от их типа и материала, из которого они изготовлены. Последняя характеристика обуславливает нюансы, возникающие при движении воздуха и особенности взаимодействия лавины воздуха со стенками.
Воздуховоды бывают:
- металлическими – это может быть черная сталь, оцинкованная, нержавейка;
- алюминиевыми гибкими гофрированными;
- пластиковые вентканалы – гибкие и жесткие;
- тканевыми.
По геометрии сечения изготавливают воздуховоды круглые, прямоугольные, овальные. Последние не столь популярны, как два первых.
Даже если имеется самый правильный проект вентиляционной системы, ошибка в подборе сечений воздуховодов может привести к нарушению циркуляции воздуха.
Следствием ошибок в расчетах будет повышенная влажность, а дальше плесень и грибок в помещении. Без правильного расчета площади всех деталей невозможно подобрать подходящие элементы вентиляционного комплекса
От этого параметра зависит:
- скорость протекания воздушной массы и ее объем;
- степень герметичности соединений;
- шумность вентиляционной системы;
- электропотребление.
Вычисления, выполненные правильно, дадут возможность сэкономить средства, поскольку количество материала будет определено точно. Но помимо экономических вопросов, главными являются все-таки параметры вентиляции, обеспечивающие комфортные условия жизнедеятельности людей.
Общие требования
В вентиляционных системах, предназначенных для удаления пожароопасных летучих веществ, воздуховоды должны производиться из огнеупорных материалов. Основные транзитные сегменты вентиляции необходимо выполнять из металла.
Воздуховоды делаются из огнеупорных материалов или из металла
Рассчитывая окончательные параметры воздуховодов, необходимо предусмотреть:
- Возможность установки противопожарных клапанов как в горизонтальном, так и в вертикальном положении.
- Монтаж воздушных затворов на площадках между этажами. Функциональные возможности этих приборов должны соответствовать нормативным требованиям по аварийному блокированию выборочных сегментов системы.
- На каждом поэтажном коллекторе возможно подключить максимально пять воздуховодов.
- Монтаж системы автоматического пожарного оповещения.
Во всех проводимых расчетах использованы рекомендации строительных норм
Во всех проводимых расчетах были использованы рекомендации строительных норм и правил. Эти нормативные значения позволяют выяснить минимально возможную эффективность вентиляции, которая сможет обеспечить комфортный микроклимат в помещении
Иначе говоря, правила СНиП ориентированы прежде всего на минимизирование затрат на монтаж и эксплуатацию вентсистемы, что немаловажно при разработке систем вентиляции общественных и админзданий
На чтение: 6 минут Нет времени?
Основным параметром, характеризующим эффективность вентиляционной системы, является расход воздуха. Его определяют как сумму значений на отдельных участках воздуховодов со стабильным расходом, ограниченных ответвлениями или заслонками. На каждом таком участке осуществляется расчёт площади воздуховодов и фасонных изделий. При определении формы вентканалов и их квадратуры основным параметром является скорость воздушного потока. Её указывают в нормативах и строительных правилах (СП). Для магистральных трубопроводов она не должна превышать 8 м/с, для ответвлений – не более 5 м/с. А в месте поступления в помещение скорость ограничена до 3 м/с.
Читайте в статье
Расчёт площади фасонных частей воздуховодов
При создании разветвленных систем вентиляции используются различные фасонные изделия:
- отводы – тройники с одинаковым или разным сечением;
- утка – отвод s-образной формы;
- зонт;
- переходники:
- между различными сечениями одной формы (как правило, разные диаметры);
- между различными типами сечений (к примеру, от прямоугольной, к круглой).
Каждое из представленных фасонных изделий рассчитывается по отдельным формулам, вследствие чего их общий расчёт является довольно сложным. Даже опытным проектировщикам требуется инженерная помощь в расчётах площади воздуховодов. Для этого они используют специальные программы.
Какие существуют программы для определения параметров фасонных частей воздуховодов?
Было разработано множество программ для расчёта площади фасонных частей воздуховодов:
- Vent-Calc v2.0 – универсальное средство проектирования и расчёта основных параметров систем вентиляции. Как утверждают разработчики, ключевыми параметрами для расчёта являются расход воздуха и длина воздуховодов. Получив от оператора эти данные, программа самостоятельно с генерирует прототип вентиляционной сети с указанием аэродинамического сопротивления по каждой ветви, ограниченной фасонными изделиями. Сумма этих показателей является основой для подбора силовой вентилирующей установки. С недавнего времени этот программный комплекс стал бесплатным;
- MagiCAD – программное обеспечение для проектирования всех типов инженерных коммуникаций. Файлы проекта могут быть импортированы в ADT и AutoCAD;
- GIDRV 3.093 – калькулятор расчёта площади воздуховодов и фасонных изделий для естественного типа вентиляции с учётом аспирации здания;
- Fans 400 – специализированное ПО для расчёта противодымной вентиляции;
- Ducter 2.5 – программа расчёта площади фасонных частей воздуховодов.
Существует несколько более простых программ и макросов, написанных на основе Microsoft Excel. В основном они выполняют расчёт аэродинамики воздуховодов различных сечений.
Также на некоторых сайтах можно встретить онлайн-калькуляторы площади поверхности воздуховодов, которые предлагают компании, занимающиеся оказанием соответствующих услуг.
Интерфейс программы Vent-calc v2.0.6.2011, закладка расчёта тепловой нагрузки калорифера
Классы плотности
Разбираясь с классами плотности воздуховодов, надо понимать, что эти транспортирующие элементы могут быть использованы в разных системах: вентиляции и кондиционирования, воздушного отопления и дымоотведения. То есть, в некоторых из этих категориях требуется повышенная плотность элементов и стопроцентная герметичность соединительных стыков, поэтому оцинкованные воздуховоды делятся на два класса.
Воздуховоды класса «П»
Система оцинкованных воздуховодов, обозначенных буквой «П», то есть плотные, устанавливаются в вентиляцию, где используется мощное насосное оборудование, создающее максимальное давление воздуха до 1,4 кПа. Воздуховоды класса «П» имеют определенные признаки:
- плотность соединения – высокая, для чего используются герметики или другие уплотняющие материалы;
- наличие в местах стыка двух воздуховодов герметичного замка.
Такие воздуховоды используются практически во всех системах, связанных с отводом воздуха и дыма, а также при транспортировке газов. К тому же СНиПами рекомендовано проводить монтаж данного вида в зданиях, которые относятся к категории взрыво- и пожароопасных.
Класса «Н»
Буква «Н» в маркировке оцинкованных воздуховодов обозначается слово нормальные. То есть, к их соединению предъявляются не самые строгие требования. Допускается определенная утечка. Поэтому воздуховоды класса «Н» можно использовать в помещениях категории пожароопасности «В» или «Г», то есть, с минимальными показателями.