Формулы для конденсаторов
Содержание:
- Параллельное и комбинированное соединение
- Использование асинхронных двигателей
- Устройство и предназначение конденсаторов
- Что такое конденсатор и его основные характеристики
- Включение трехфазного электродвигателя в однофазную сеть питания
- Расчет гасящего конденсатора для светодиода
- Схемы подключения при рабочем напряжении в 380 В
- Расчет конденсатора для светодиодов
- Разница между пусковым и рабочим конденсаторами
- Как рассчитать и подобрать гасящий конденсатор
- Пояснения к расчету
- Напряжение
- Что такое конденсатор
- Результаты расчетов
- Как рассчитать емкость рабочего конденсатора
- Подключение трёхфазного двигателя к однофазной сети
- Другие методы расчёта конденсатора для трехфазного двигателя
- Параметры конденсатора
- Подключение пускового и рабочего конденсаторов для трехфазного электромотора
Параллельное и комбинированное соединение
Последовательное и параллельное соединение аккумуляторов
Параллельное соединение конденсаторов представляется иным уравнением. Для определения общего емкостного значения надо просто найти совокупность всех величин по отдельности:
С = С1 + С2 + С3 + …
Напряжение к каждому элементу будет прикладываться идентичное. Следовательно, для усиления емкости надо соединить несколько деталей параллельно.
Если соединения смешанные, последовательно-параллельные, то для таких контуров применяют эквивалентные, или упрощенные, электросхемы. Каждую область цепи рассчитывают отдельно, а затем, представляя их вычисленными емкостями, объединяют в простую цепь.
Варианты получения эквивалентных схем
Использование асинхронных двигателей
Трёхфазные и однофазные двигатели асинхронного типа активно используются в различных отраслях хозяйства. Для этого имеется несколько причин:
- Простота конструкции.
- Надёжность и долговечность при использовании.
- Для того чтобы запустить мотор, нет необходимости использовать дорогие и дефицитные устройства.
- Мотор не требует слишком частого проведения технического обслуживания.
По внешнему виду можно легко отличить трёхфазные двигатели от однофазных. У первых всегда имеется 6 клемм, а у вторых их количество равно двум или четырём.
У трёхфазных моторов обмотки подключаются двумя способами: звездой или треугольником. Они предполагают использование напряжения, составляющего 380 вольт. Однако в быту оно применяется редко. Чтобы использовать такой мотор, нужно знать, как его правильно подключать.
Это делают с использованием фазосдвигающего конденсатора. Это позволит использовать трёхфазные двигатели при подключении к однофазной сети. В этом случае мощность мотора будет равна 50%-60% от номинальной.
Проверка пускового конденсатораИсточник antemion.ru
Оптимальность работы трёхфазного двигателя обеспечивается при условии применения переменной ёмкости. Чтобы так сделать, на первом этапе применяют рабочий и пусковой конденсаторы, а на втором — только первый из них.
В быту часто применяются асинхронные однофазные двигатели. Для запуска обычно требуется дополнительная обмотка.
При выборе ёмкости конденсатора необходимо учитывать то, как зависит от неё величина пускового момента. При увеличении этой характеристики, происходит увеличение усилия. При определённом значении оно становится максимальным. После дальнейшего увеличения пусковой момент станет падать.
Расчёт параметров конденсатораИсточник ук-энерготехсервис.рф
Устройство и предназначение конденсаторов
Этот элемент электрической схемы состоит из двух пластин (обкладок). Обкладки расположены по отношению друг к другу так, что между ними оставлен зазор. При включении конденсатора в цепь электрического тока на обкладках накапливаются заряды. Из-за физического зазора между пластинами устройство обладает маленькой проводимостью.
Внимание! Этот зазор бывает воздушным или заполнен диэлектриком. В качестве диэлектрика применяются: бумага, электролит, оксидные плёнки
Главная особенность такого двухполюсника – способность накапливать энергию электрического поля и мгновенно отдавать её на нагрузку (заряд и разряд).
Первым прототипом ёмкости стала Лейденская банка, созданная в 1745 году в городе Лейдене немцем фон Клейстом. Банку изнутри и снаружи выстилали медной фольгой. Так появилась идея создания обкладок.Лейденские банки, соединённые параллельно
Графическое обозначение двухполюсника на схемах и чертежах – две вертикально расположенные черты (как обкладки) с зазором между ними.
Что такое конденсатор и его основные характеристики
Конденсатор — это радиодеталь, которая работает как накопитель электрической энергии. Чтобы понятнее было, как он работает, его можно представить как своего рода небольшой аккумулятор. Обозначается двумя параллельными чёрточками.
Обозначения различных типов конденсаторов на схемах. Чаще всего из строя выходят электролитические конденсаторы, так что стоит запомнить их обозначение
Основная характеристика конденсатора любого типа — ёмкость. Это то количество заряда, которое он в состоянии накопить. Измеряется в Фарадах (сокращенно просто буква F или Ф), а вернее, в более «мелких» единицах:
Вторая важная характеристика — номинальное напряжение. Это то напряжение, при котором гарантирована длительная безотказная работа. Например, 4700 мкФ 35 В, где 35 В — это номинальное напряжение 35 вольт.
У крупных по размеру конденсаторов, ёмкость и напряжение указаны на корпусе
Можно использовать конденсаторы на 50 вольт вместо конденсаторов на 25 вольт. Но это порой нецелесообразно, так как те, которые рассчитаны на более высокое напряжение, дороже, да и габариты у них больше.
Включение трехфазного электродвигателя в однофазную сеть питания
Обмотки электродвигателя соединяют двумя способами: звезда (Y) или треугольник (Δ).
При подключении трехфазного двигателя к однофазной сети предпочтительнее соединение типа треугольник. На шильдике двигателя об этом есть информация, и когда там обозначено Y — звезда, самым лучшим вариантом было бы открыть его кожух, найти концы обмоток и правильно переключить обмотки в треугольник. Иначе потери мощности будут слишком большими.
Включение двигателя на одну фазу питающей сети требует создания из нее и двух остальных. Это можно сделать по следующей схеме
При запуске двигателя в работу в самом начале требуется высокий стартовый ток, поэтому емкости рабочего конденсатора обычно не хватает. Чтобы «ему помочь», используют специальный стартовый конденсатор, который подключается к рабочему конденсатору параллельно. В самом простом случае (невысокая мощность двигателя) его выбирают точно таким же, как и рабочий. Но для этой цели выпускаются и специально стартовые конденсаторы, на которых так и написано: starting.
Стартовый конденсатор должен быть включен в работу только во время пуска и разгона двигателя до рабочей мощности. После этого его отключают. Используется кнопочный выключатель. Или двойной: одной клавишей включается сам двигатель и кнопка фиксируется во включенном положении, кнопка же, замыкающая цепь рабочего конденсатора, каждый раз размыкается.
Расчет гасящего конденсатора для светодиода
Разберем подробный расчет, ниже сможете найти форму онлайн калькулятора.
Расчет емкости конденсатора для светодиода:
С(мкФ) = 3200 * Iсд) / √(Uвх² — Uвых²)
С мкФ – ёмкость конде-ра. Он должен быть рассчитан на 400-500В; Iсд – номинальный ток диода (смотрим в паспортных данных); Uвх – амплитудное напряжение сети — 320В; Uвых – номинальное напряжение питания LED.
Можно встретить еще такую формулу:
C = (4,45 * I) / (U — Uд)
Она используется для маломощных нагрузок до 100 мА и до 5В.
Подключение одного светодиода
Для расчета емкости конде-ра нам понадобится:
- Максимальный ток диода – 0,15А;
- напряжение питания диода – 3,5В;
- амплитудное напряжение сети — 320В.
Для таких условий параметры конде-ра: 1,5мкФ, 400В.
Подключение нескольких светодиодов
При расчете конденсатора для светодиодной лампы необходимо учитывать, что диоды в ней соединены группами.
- Напряжение питания для последовательной цепочки – Uсд * количество LED в цепи;
- сила тока – Iсд * количество параллельных цепочек.
Для примера возьмём модель с шестью параллельными линиями из четырёх последовательных диодов.
Напряжение питания – 4 * 3,5В = 14В; Сила тока цепи – 0,15А * 6 = 0,9А;
Для этой схемы параметры конде-ра: 9мкФ, 400В.
Схемы подключения при рабочем напряжении в 380 В
Выпускаемые промышленностью асинхронные трехфазные двигатели возможно подключить двумя основными способами:
- соединение «звездой»;
- соединение «треугольником».
Электродвигатели конструктивно выполняются из подвижного ротора и корпуса, в который вставлен находящийся неподвижно статор (может быть собран непосредственно в корпусе или вставляться туда). Статор имеет в своем составе 3 равнозначные обмотки, специальным образом намотанные и расположенные на нем.
При соединении «звездой» концы всех трех обмоток двигателя соединяются вместе, а к их началам подаются три фазы. При соединении обмоток «треугольником» конец одной соединяется с началом следующей.
Соединение треугольник и звезда.
Расчет конденсатора для светодиодов
Необходимость подключить светодиод к сети – частая ситуация. Это и индикатор включения приборов, и выключатель с подсветкой, и даже диодная лампа.
Существует множество схем подключения маломощных индикаторных LED через резисторный ограничитель тока, но такая схема подключения имеет определённые недостатки. При необходимости подключить диод, с номинальным током 100-150мА, потребуется очень мощный резистор, размеры которого будут значительно больше самого диода.
Вот так бы выглядела схема подключения настольной светодиодной лампы. А мощные десяти ваттные резисторы при низкой температуре в помещении можно было бы использовать в качестве дополнительного источника отопления.
Применение в качестве ограничителя тока конде-ров позволяет значительно уменьшить габариты такой схемы. Так выглядит блок питания диодной лампы мощностью 10-15 Вт.
Разница между пусковым и рабочим конденсаторами
Чтобы лучше понимать, для чего нужен пусковой конденсатор, каковы особенности их применения, нужно знать об их различиях. Основными являются следующие:
- У них различное место установки. Рабочий является частью цепи рабочих обмоток двигателя. Пусковой представляет собой часть цепи запуска мотора.
- Конденсаторы различаются тем, когда именно они должны работать. Пусковой включён в цепь в течение первых нескольких секунд после запуска. Затем его отключают в ручном ли автоматическом режиме. Рабочий выполняет свои функции в течение всего того времени, пока работает двигатель.
- У каждого из них имеются свои функции. Пусковой обеспечивает сдвиг фаз между обмотками для обеспечения основного усилия при первоначальном запуске мотора. Рабочий обеспечивает вращение фаз, необходимое для нормальной работы электромотора.
- Для каждого типа конденсаторов различаются требования по рабочему напряжению. Пусковой должен быть рассчитан на такое, которое превышает питающее в 2-3 раза. Рабочий должен быть рассчитан на такое, которое больше поступающего в 1,15 раза.
В обоих случаях чаще всего используют конденсаторы типов МБГО, МБГЧ.
Как рассчитать и подобрать гасящий конденсатор
В самом начале темы, относительно подбора гасящего конденсатора, рассмотрим цепь, состоящую из резистора и конденсатора, последовательно подключенных к сети. Полное сопротивление такой цепи будет равно:
Эффективная величина тока, соответственно, находится по закону Ома, напряжение сети делить на полное сопротивление цепи:
В результате для тока нагрузки и входного и выходного напряжений получим следующее соотношение:
А если напряжение на выходе достаточно мало, то мы имеем право считать эффективное значение тока приблизительно равным:
Однако давайте рассмотрим с практической точки зрения вопрос подбора гасящего конденсатора для включения в сеть переменного тока нагрузки, рассчитанной на напряжение меньшее стандартного сетевого.
Допустим, у нас есть лампа накаливания мощностью 100 Вт, рассчитанная на напряжение 36 вольт, и нам по какой-то невероятной причине необходимо запитать ее от бытовой сети 220 вольт. Лампе необходим эффективный ток, равный:
Пояснения к расчету
Схема соединения обычно отмечена на самом конденсаторе, и может обозначаться либо звёздой, либо треугольником. Как правило, это две разные формы, ёмкость которых рассчитывается, по- разному:
Схема подключения рабочего и пускового конденсатора при разных способах подключения обмоток | Расчетные зависимости |
---|---|
Ср = 2800*I/U; I = P/(√3*U*η*cosϕ) |
Ср – емкость рабочего конденсатора
Ср = 4800*I/U; I = P/(√3*U*η*cosϕ)
Ср – емкость рабочего конденсатора
Сп = 2,5*Ср, где Сп – емкость пускового конденсатора при любом способе подключения
Расшифровка обозначений:
Ср – емкость рабочего конденсатора, мкФ Сп – емкость пускового конденсатора, мкФ I – ток, А U – напряжение в сети, В η – КПД двигателя в %, деленных на 100 cosϕ – коэффициент мощности
Полученные результаты расчета используются для подбора конденсаторов нужных номиналов. Номинала именно расчетного значения вряд ли можно будет найти, поэтому правила подбора следующие:
- если расчетное значение точно попало в существующий номинал, то в этом случае повезло – берете именно такой.
- если совпадения нет, то рекомендуется выбирать емкость ближайшего нижнего номинального значения. Выбирать выше не следует (особенно для рабочих конденсаторов), так как существует вероятность значительного возрастания рабочих токов и перегрева обмоток.
- По напряжению конденсаторы обязательно подбираются с номиналом не менее, чем в 1,5 раза выше напряжения сети, поскольку в момент пуска напряжение на самом конденсаторе всегда повышенное. Например, для однофазного напряжения 220 В рабочее напряжение конденсатора должно быть не менее 360 В, а по опыту электриков даже не менее 400 В.
Ниже мы приведем таблицу номинальных значений конденсаторов серий СВВ60 и СВВ65. Эти конденсаторы чаще всего применяют при подключении асинхронных двигателей. Серия СВВ65 отличается от серии СВВ60 металлическим корпусом. В качестве пусковых часто применяют электролитические конденсаторы серии CD60. Причем опытные профессионалы не рекомендуют использовать их в качестве рабочих, поскольку продолжительные время работы быстро выводит их из строя.
Полипропиленовые пленочные конденсаторы серий СВВ60 и СВВ65 | Электролитические неполярные конденсаторы серии CD60 | |
---|---|---|
Изображение | ||
Номинальное рабочее напряжение, В | 400; 450; 630 | 220-275; 300; 450 |
Номинальный ряд, мкФ | 1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 10; 12; 14; 15; 16; 20; 25; 30; 35; 40; 45; 50; 60; 65; 70; 75; 80; 85; 90; 100; 120; 150 | 5; 10; 15; 20; 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 1000; 1200; 1500 |
Иногда бывает рациональнее использовать два и более конденсатора, чтобы получить нужную емкость. При этом они могут быть соединены последовательно или параллельно. При параллельном соединении результирующая емкость будет складываться, при последовательном она будет меньше емкости любого из конденсаторов. Для расчета данного соединения мы также подготовили для вас специальный калькулятор.
Напряжение
Рассматривая различные типы пусковых выпрямителей трехфазного двигателя, подключаемого к однофазной сети, следует принимать во внимание и такой параметр, как рабочее напряжение. Ошибкой будет использование выпрямителя, показатель напряжения которого превышает на порядок требуемый
Помимо высоких затрат на его приобретение придется выделить для него больше места из-за его больших габаритов
Ошибкой будет использование выпрямителя, показатель напряжения которого превышает на порядок требуемый. Помимо высоких затрат на его приобретение придется выделить для него больше места из-за его больших габаритов.
В то же время не стоит рассматривать модели, в которых напряжение имеет меньший показатель, нежели напряжение сети. Устройства с такими характеристиками не смогут эффективно выполнять свои функции и довольно скоро выйдут из строя.
Чтобы свести к не ошибиться при выборе рабочего напряжения , следует придерживаться следующей схемы расчета: итоговый параметр должен соответствовать произведению фактического напряжения сети и коэффициента 1,15, при этом расчетное значение должно составлять не менее 300 В.
В том случае, если выбираются бумажные выпрямители для работы в сети переменного напряжения, то их рабочее напряжение нужно разделить на 1,5-2. Поэтому рабочее напряжение для бумажного конденсатора, для которого производитель указал напряжение в 180 В, в условиях работы в сети переменного тока составит 90-120 В.
Дабы понять, как на практике реализуется идея подключение трехфазного электродвигателя к однофазной сети, выполним эксперимент с использованием агрегата АОЛ 22-4 мощностью 400 (Вт) . Главная задача, которая должна быть решена – запуск двигателя от однофазной сети с напряжением 220 В.
Используемый электродвигатель имеет следующие характеристики:
- показатель мощности вчера– 400 кВт;
- напряжение сети 220В переменного напряжения;
- Ток, все характеристики которого были определены при помощи электроизмерительных клещей в трехфазном режиме работы– 1,9А;
- Схема подключения обмоток «звезда».
Помня о том, что используемый электродвигатель имеет небольшую мощность, при подключении его к однофазной сети можно купить лишь рабочий конденсатор.
Расчет емкости рабочего выпрямителя:
Пользуясь приведенными формулами, возьмем за среднее значение емкости рабочего выпрямителя показатель 25 мкФ. Здесь была выбрана несколько большая емкость, равная 10 мкФ. Так мы попытаемся выяснить, как влияет такое изменение на пуск аппарата.
Теперь нам необходимо купить выпрямители, в качестве последних будут использоваться конденсаторы типа МБГО. Далее на основе подготовленных выпрямителей выполняется сборка требуемой емкости.
В процессе работы следует помнить, что каждый такой выпрямитель имеет емкость 10 мкФ.
Если взять два конденсатора и соединить их друг с другом по параллельной схеме, то итоговая емкость составит 20 мкФ. При этом показатель рабочего напряжения будет равен 160В. Для достижения требуемого уровня в 320 В необходимо взять эти два выпрямитель и подключить их еще к такой же паре, конденсаторов, соединенных параллельно, но уже применив последовательную схему. В итоге суммарная емкость составит 10 мкФ. Когда батарея рабочих конденсаторов будет готова, подключаем ее к двигателю. Далее останется только запустить его в однофазной сети.
В процессе проведенного эксперимента с подключением двигателя к однофазной сети работа потребовала меньше времени и сил. Используя подобный агрегат с выбранной батареей выпрямителей, следует учесть, что его полезная мощность будет находиться на уровне до 70-80 % от номинальной мощности, при этом частота вращения ротора будет соответствовать номинальному показателю.
Важно: если используемый двигатель рассчитан на сеть напряжением 380/220 В, то при подключении к сети следует использовать схему «треугольник»
Обращайте внимание на содержание бирки: бывает так, что там приведено изображение звезды с напряжением 380 В. В этом случае правильную работу двигателя в сети можно обеспечить, выполнив следующие условия
Сперва придется «распотрошить» общую звезду, после чего соединить с клеммником 6 концов. Искать общую точку следует в лобовой части двигателя.
Видео: подключение однофазного двигателя в однофазную сеть
Решение об использовании пускового конденсатора следует принимать исходя из конкретных условий, чаще всего оказывается достаточно рабочего. Однако если используемый двигатель подвергается повышенной нагрузке, то эксплуатацию рекомендуется остановить. В этом случае необходимо правильно определить необходимую емкость устройства, чтобы обеспечить эффективную работу агрегата.
Что такое конденсатор
Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.
Существует три вида конденсаторов:
- Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
- Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
- Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).
Как подобрать конденсатор для трехфазного электродвигателя
Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.
Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:
- k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
- Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
- U сети – напряжение питания сети, т.е. 220 вольт.
Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.
Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора
Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.
В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.
Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.
Есть несколько режимов работы двигателей подобного типа:
- Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
- Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
- Рабочий конденсатор + пусковой конденсатор (подключены параллельно).
Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.
Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.
Результаты расчетов
Информация носит справочно-информационный характер
Для чего необходим расчет емкости конденсатора
Запустить асинхронный трехфазный электродвигатель, рассчитанный на напряжение 380 и даже 220 Вольт, от бытовой однофазной сети с напряжением 220 В напрямую не получится, так как при таком подключении обмоток статора невозможно сгенерировать вращающееся магнитное поле. Добиться необходимых условий для возникновения вращения магнитного потока можно включением в питающую сеть конденсаторов, которые и вызовут сдвиг фазы на 90° и трансформируют однофазный ток в некое подобие трехфазного. Чтобы двигатель работал с наименьшей потерей номинальной мощности и не вышел из строя, нужно правильно подобрать емкость пусковых и рабочих конденсаторов или конденсаторных батарей. С этой целью нами был разработан калькулятор емкости конденсаторов.
Как работает калькулятор емкости конденсаторов онлайн
Для расчета необходимых емкостей достаточно выбрать схему подключения обмоток статора и ввести в специальные окна технические характеристики подключаемого электродвигателя:
- мощность, Вт
- КПД, %
- коэффициент мощности (cos φ )
После внесения всех необходимых данных, которые указаны на шильдике двигателя, требуется нажать на кнопку «Рассчитать»
Программа выполнит расчет пускового конденсатора и вычислит необходимую емкость рабочего конденсатора. Данные отразятся в соответствующих окнах.
Теперь Вам не требуется выполнять вычисления с помощью формул, наш калькулятор рассчитает емкость конденсаторов онлайн.
В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».
Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?
Если с умом подойти к работе, все реально. Главное — знать основные схемы и их особенности.
Как рассчитать емкость рабочего конденсатора
Для двух соединений обмоток берутся несколько разные соотношения.
В формуле введен коэффициент соединения Кс, который для треугольника равен 4800, а для звезды — 2800.
Где значения Р (мощность), U (напряжение 220 В), η (КПД двигателя, в процентном значении деленном на 100) и cosϕ (коэффициент мощности) берутся с шильдика двигателя.
Вычислить значение можно с помощью обычного калькулятора или воспользовавшись чем-то вроде подобной вычислительной таблицы. В ней нужно подставить значения параметров двигателя (желтые поля), результат получается в зеленых полях в микрофарадах
Однако не всегда есть уверенность, что параметры работы двигателя соответствуют тому, что написано на шильдике. В этом случае нужно измерить реальный ток измерительными клещами и воспользоваться формулой Cр = Кс*I/U.
Подключение трёхфазного двигателя к однофазной сети
В этой статье рассмотрим подключение трёхфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего конденсатора, а также расчёт ёмкости пускового и рабочего конденсаторов, подключение трёхфазного двигателя «звездой» и «треугольником».
Самый простой пуск трёхфазного двигателя в однофазной цепи возможен с помощью фазосдвигающего конденсатора, включённого в третью обмотку двигателя. КПД(коэффициент полезного действия) двигателя в этом случае будет около 60% (по сравнению с трёхфазным включением).
Важно
При пуске маломощного асинхронного электродвигателя ( до 500 Вт), или при пуске двигателя без нагрузки на его вал, можно ограничится использованием только, так называемого, рабочего конденсатора.
При пуске более мощных двигателей нужно использовать ещё и пусковой конденсатор, необходимый для разгона двигателя.
Схема включения двигателя в однофазную сеть
Подключение трёхфазного двигателя
В схеме обозначено:
- FU1, FU2 — предохранители.
- S1 — двухполюсный выключатель.
- S2 — переключатель направления движения вала двигателя (реверс).
- S3 — кнопка подключения пускового конденсатора (разгон двигателя).
- Сп — пусковой конденсатор.
- Ср — рабочий конденсатор.
- R1 — разрядный резистор.
- М — электродвигатель.
После включения выключателя S1 необходимо сразу нажать кнопку S3, после разгона двигателя (2-3 сек) кнопку отпустить.
Расчёт элементов схемы включения двигателя
Ёмкость рабочего конденсатора для данной схемы (соединение обмоток электродвигателя «треугольником») рассчитывается по следующей формуле:
Ср = 4800*I/U, где
Ср — ёмкость рабочего конденсатора в мкФ;I — ток электродвигателя, А;U — сетевое напряжение(220 В).
При соединении обмоток электродвигателя «звездой» ёмкость рабочего конденсатора определяется по формуле:
Ср = 2800*I/U , обозначения те же.
Если неизвестен ток электродвигателя, но известна мощность, то ток можно рассчитать по формуле:
I = P/(√3*U*ɳ*cosφ) , где
P — мощность электродвигателя, Вт;ɳ — КПД электродвигателя;cosφ — коэффициент мощности.
Приблизительно можно принять ɳ=0,6, cosφ = 0,8. Тогда формула упростится и примет вид:
I = P/(0,83*U).
Ёмкость пускового конденсатора должна быть в 2-3 раза больше ёмкости рабочего.
Нужную ёмкость конденсатора можно собрать из нескольких, имеющихся в наличии конденсаторов, как это сделать описано здесь. Лучше всего применять металлобумажные или плёночные конденсаторы. Рабочее напряжение конденсаторов не ниже 300В.
В некоторых статьях предлагают использовать электролитические конденсаторы, соединив пару конденсаторов минусовыми выводами и зашунтировав их диодами.
Я не рекомендую этого делать, так как при выходе из строя диода (при его электрическом пробое), через электролитический конденсатор потечёт переменный ток и он скорее всего взорвётся из-за нагрева.
Совет
Разрядный резистор R1 служит для разряда пускового конденсатора после его отключения. Можно обойтись и без него, но тогда следует помнить, что на устройстве может остаться опасное напряжение, даже после его выключения. Можно взять резистор сопротивлением 0,5 — 1 мОм, на мощность рассеяния не ниже 0,5 Вт.
Все выключатели и предохранители должны выдерживать рабочий ток электродвигателя.
Советы: лучше всего использовать соединение «треугольником», при соединении обмоток «звездой» значительная часть мощности двигателя теряется.
На шильдике двигателя указывается схема соединения обмоток, возможность её изменения и рабочее напряжение обмоток. Например: ∆/Ү 220/380 обозначает, что обмотки электродвигателя могут быть подсоединены либо «треугольником» на 220 В, либо «звездой» на напряжение 380В.
Обозначение Ү 380 — говорит о том, что обмотки подсоединены по схеме «звезда» и рассчитаны на 380 В и в распредкоробку двигателя выведено всего три провода. Тут придётся подключать по схеме «звезда», потеряв мощность.
Можно конечно залезть внутрь двигателя и вывести недостающие концы в распредкоробку, но это работа уже для специалиста.
Если вам помогла эта статья, то вы можете поделиться ей со своими друзьями, нажав кнопки социальных сетей, расположенные ниже.
Другие методы расчёта конденсатора для трехфазного двигателя
Расчёт конденсатора по мощности двигателя
Это довольно грубый расчёт и заключается он в том, что ёмкость подбирается по мощности. Существуют различные формулы, но все они сводятся к тому, что нужно брать 6-7 мкФ на 100 ватт мощности или 60-70 мкФ на 1 кВт. Насколько верны эти расчёты? Простой реальный пример. Двигатель 1,1 кВт имеет номинальный ток около 4,8 ампера при соединении обмоток треугольником. Следовательно, конденсатор для номинального режима будет 105 мкФ (не 60 и не 70).
Расчёт конденсатора через напряжение
Вспоминаем закон Ома, делаем небольшие умозаключения и понимаем, что полученный ток посредством электромагнитной индукции и магнитных потоков будет создавать напряжение. Обмотки сдвинуты на угол 120°. Дальше углубляться в теорию не будем, но из сказанного можно понять, что сдвигая конденсатором ток мы получаем как бы трехфазное напряжение. Следовательно, если токи в обмотках будут равны, то и напряжения тоже будут равны. Исходя из этого понимания можно подобрать точное значение конденсатора имея под рукой только вольтметр. Этот метод подбора ёмкости конденсатора можно назвать самым точным
Внимание на экран:
При использовании данного метода лучше всего использовать два вольтметра, так вы сразу будете видеть результат, так сказать, в онлайн режиме. Вся задача сводится к тому, чтобы подключая или отключая дополнительные конденсаторы привести значения первого и второго вольтметра к одному напряжению. Помните, что вы будете работать с опасным напряжением, поэтому перед работой прочитайте технику безопасности.
Параметры конденсатора
Основными характеристиками конденсатора являются номинальная емкость с допуском, а также номинальное напряжение и диэлектрические потери.
К наиболее важным параметрам конденсатора относятся испытательное напряжение, допустимое переменное напряжение, сопротивление изоляции, температурный коэффициент емкости, климатическая категория и размеры.
- На емкость конденсатора электродвигателя можно влиять, изменяя три параметра: поверхность крышек, расстояние между ними и проницаемость изолятора. Если нужно получить конденсатор с большей емкостью, то следует использовать большие пластины, уменьшить расстояние между ними и использовать хороший диэлектрик.
- Однако, при увеличении поверхность крышек, неизбежно увеличиваются габариты конденсатор. При уменьшении расстояние между пластинами, снижается максимальное напряжение, с которым может работать конденсатор.
- При очень тонком диэлектрическом слое небольшого напряжения достаточно, чтобы пробить изолятор и вызвать короткое замыкание.
Электродвигатель потребляет много мгновенной мощности во время запуска и создает значительные помехи. Пусковые конденсаторы используются для обеспечения двигателя достаточной мощностью и в то же время соответствующего фазового сдвига в однофазных двигателях.
Подключение пускового и рабочего конденсаторов для трехфазного электромотора
Вот оно соответствие всех нужных приборов элементам схемы
Теперь выполним подключение, внимательно разобравшись с проводами
Так можно подключить двигатель и предварительно, используя неточную прикидку, и окончательно, когда будут подобраны оптимальные значения.
Подбор можно сделать и экспериментально, имея несколько конденсаторов разных емкостей. Если их присоединять параллельно друг другу, то суммарная емкость будет увеличиваться, при этом нужно смотреть, как ведет себя двигатель. Как только он станет работать ровно и без перенагрузки, значит, емкость находится где-то в районе оптимума. После этого приобретается конденсатор, по емкости равный этой сумме емкостей испытываемых конденсаторов, включенных параллельно. Однако можно при таком подборе измерять фактический потребляемый ток, используя измерительные токовые клещи, а провести расчет емкости конденсатора по формулам.