Цифровая маркировка конденсаторов онлайн калькулятор
Содержание:
- Итак, как подобрать конденсатор для однофазного электродвигателя?
- Смешанный способ
- Что такое конденсатор
- Зачем нужна маркировка
- Пожалуйста, помогите c переводом:
- Сравнение рабочего и пускового конденсатора
- Перевод единиц Ёмкости электрической, электрической емкости, маркировка конденсаторов — таблица + Таблица перевода величин емкостей и обозначений конденсаторов
- Программа для определения емкости конденсатора по цифровой маркировке
- Обзор моделей
- Кодовая маркировка, дополнение
- Параллельное соединение
- Фарад, как единица измерения:
- Подключение светодиода к 220 вольтам, схемы, примеры (видео, калькулятор)
- Программа для определения емкости конденсатора по цифровой маркировке
- Таблица перевода емкостей и обозначений конденсаторов
- Калькулятор емкости последовательного соединения конденсаторов
- Метод 5: измерение ёмкости с помощью модуля CVD
- Примеры расчетов
- Основные параметры
- Кодовая или цифровая маркировка конденсаторов
- Блиц-советы
- Смешанный способ
Итак, как подобрать конденсатор для однофазного электродвигателя?
Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.
Есть несколько режимов работы двигателей подобного типа:
- Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
- Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
- Рабочий конденсатор + пусковой конденсатор (подключены параллельно).
Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.
Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.
Смешанный способ
Сочетает в себе параллельное и последовательное подключения.
При этом для участков с последовательным соединением характерны свойства последовательного соединения, а для участков с параллельным — свойства параллельного.
Оно используется, когда ни электроемкость, ни номинальное напряжение приборов, имеющихся в продаже, не подходят для задачи. Обычно такая проблема возникает в радиотехнике.
Чтобы определить общее значение электроемкости, нужно будет сначала определить это же значение для параллельно соединенных двухполюсников, а потом для их последовательного соединения.
Что такое конденсатор
Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.
Существует три вида конденсаторов:
- Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
- Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
- Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).
Как подобрать конденсатор для трехфазного электродвигателя
Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.
Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:
- k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
- Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
- U сети – напряжение питания сети, т.е. 220 вольт.
Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.
Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора
Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.
В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.
Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.
Есть несколько режимов работы двигателей подобного типа:
- Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
- Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
- Рабочий конденсатор + пусковой конденсатор (подключены параллельно).
Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.
Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.
Зачем нужна маркировка
Задачей маркировки стоит соответствие каждого конкретного элемента определенным значениям рабочей характеристики. Маркировка конденсаторов включает в себя следующее:
- собственно, емкость – основная характеристика;
- максимально допустимое значение напряжения;
- температурный коэффициент емкости;
- допустимое отклонение емкости от номинального значения;
- полярность;
- год выпуска.
Максимальное значение напряжения важно тем, что при превышении его значения происходят необратимые изменения в элементе, вплоть до его разрушения. Температурный коэффициент емкости (ТКЕ) характеризует изменение ёмкости при колебаниях температуры окружающей среды или корпуса элемента. Данный параметр крайне важен, когда конденсатор используется в частотозадающих цепях или в качестве элемента фильтра
Данный параметр крайне важен, когда конденсатор используется в частотозадающих цепях или в качестве элемента фильтра
Температурный коэффициент емкости (ТКЕ) характеризует изменение ёмкости при колебаниях температуры окружающей среды или корпуса элемента. Данный параметр крайне важен, когда конденсатор используется в частотозадающих цепях или в качестве элемента фильтра.
Допустимое отклонение означает точность, с которой возможно отклонение номинальной емкости конденсаторов.
Полярность подключения в основном характерна для электролитических конденсаторов. Несоблюдение полярности включения, в лучшем случае, приведет к тому, что реальная ёмкость элемента будет сильно занижена, а в реальности элемент практически мгновенно выйдет из строя из-за механического разрушения в результате перегрева или электрического пробоя.
Наибольшее отличие в принципах маркировки конденсаторов наблюдается в радиоэлементах, выпущенных за рубежом и предприятиями на постсоветском пространстве. Все предприятия бывшего СССР и те, что продолжают работать сейчас, кодируют выпускаемую продукцию по единому стандарту с небольшими отличиями.
Пожалуйста, помогите c переводом:
В Италии призывают снять санкции с России
В северо-восточном регионе Италии Венето призывают ЕС и правительство Италии отменить санкции против России. Соответствующую резолюцию принял Региональный совет Венето. Об этом в среду, 11 апреля, сообщает агентство ANSA.
За резолюцию под названием «Российское или венецианское эмбарго» проголосовали 36 советников, против были восемь, двое воздержались.
Длина ущелья — 446 км. Его ширина в верхней части колеблется в пределах 6-30 км., в нижней — от 800 до 1000 метров. Максимальная глубина достигает отметки в 1700-1800 метров.
Все остальные причины (плохая успеваемость, неразделенная любовь, конфликт с учителем и т.д.) можно преодолеть, если ребенок знает, что дома его любят и ждут, и у него впереди светлое будущее. Полноценное общение ребенка с родителями научит быть уверенным в себе, относиться к происходящему с оптимизмом
Уважаемый друг! Ваше пожелание будет сделано, будут добавлены вам бонусы. До встречи
Сравнение рабочего и пускового конденсатора
Сравнительная таблица применения конденсаторов для асинхронных двигателей, включенных на напряжение 220 В.
Таблица сравнения характеристик.
В связи с тем, что указанные типы конденсаторов имеют относительно большие габариты и стоимость, в качестве рабочего и пускового конденсатора можно использовать полярные (оксидные) конденсаторы. Они обладают следующим достоинством: при малых габаритах они имеют намного большую емкость, чем бумажные. Наряду с этим существует весомый недостаток: включать в сеть переменного тока напрямую их нельзя. Для использования совместно с двигателем, нужно применить полупроводниковые диоды.
Будет интересно Что такое ионистор?
Схема включения несложная, но в ней есть недостаток: диоды должны быть подобраны в соответствии с токами нагрузки. При больших токах диоды необходимо устанавливать на радиаторы. Если расчет будет неверным, или теплоотвод меньшей площади, чем требуется, диод может выйти из строя и пропустит в цепь переменное напряжение. Полярные конденсаторы рассчитаны на постоянное напряжение и при попадании на них напряжения переменного они перегреваются, электролит внутри них закипает и они выходят из строя, что может принести вред не только электромотору, но и человеку, обслуживающему данное устройство.
Напряжение 220 В – является напряжением опасным для жизни. В целях соблюдения правил безопасной эксплуатации электроустановок потребителей, сохранения жизни и здоровья лиц, эксплуатирующих данные устройства, применение данных схем включения должен проводить специалист.
Перевод единиц Ёмкости электрической, электрической емкости, маркировка конденсаторов — таблица + Таблица перевода величин емкостей и обозначений конденсаторов
Перевести из: | Перевести в: | ||||
Ф | абФ | Ф до 1948 г. | μФ | статФ | |
1 Ф = фарада = F = farad (единица СИ) это: | 1,0 | 1.0×10-9 | 1.000495 | 1.0×106 | 8.987584×1011 |
1 абФ = Абфарад = Abfarad = единица СГСМ = EM unit это: | 1.0×109 | 1,0 | 1.000495×109 | 1.0×1015 | 8.987584×1020 |
1Ф до 1948 г. = «farad international»: |
0.999505 | 9.995052×10-10 | 1,0 | 9.995052×105 | 8.9831369×1011 |
1 микрофарад = μФ = μF: | 1.0×10-6 | 1.0×10-15 | 1.000495×10-6 | 1,0 | 8.987584×105 |
1 Статфарад = статФ = Statfarad = единица СГСЭ = ES unit это: | 1.112646×10-12 | 1.112646×10-21 | 1.131968×10-12 | 1.112646×10-6 | 1,0 |
- Приставки: мили-, микро-, нано-, пико- — таблица тут
- Формулы емкости конденсатора.
Программа для определения емкости конденсатора по цифровой маркировке
Данная программа позволяет оперативно определить емкость конденсатора по цифровой маркировке. Определение емкости конденсатора выполняется в соответствии со стандартами IEC по таблице 1. Сам принцип определения емкости конденсатора показан на рис.1.
Рис.1 – Определение емкости конденсатора
Рассмотрим на примере определение емкости конденсатора по цифровой маркировке с помощью данной программы. Выберем конденсатор с цифровой маркировкой 104, для данного конденсатора в соответствии с таблицей 1 и представленным методом определения емкости (см.рис.1), емкость составит: 104 = 10 х 104 = 100000 pF = 100 nF = 0,1 µF, для цифровой маркировки 330, емкость составит: 330 = 33 pF = 0,033 nF = 0,000033 µF. Как мы видим, программа правильно определяет емкость конденсатора по цифровой маркировке.
Если же Вам нужно определить емкость конденсатора по цветовой маркировке, воспользуйтесь программой «Конденсатор v1.2».
Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.
Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.
Хотите быстро рассчитать силу тока, напряжение, мощность или другие электрические величины.
Данный калькулятор расчета основных измеряемых величин в электротехнике, выполненный в программе Microsoft.
Содержание 1. Введение2. Функциональность программы:2.1 Расчет токов КЗ в сети 0,4 кВ — трехфазных.
Представляю Вашему вниманию еще одну программу расчета уставок дифференциальной токовой защиты.
В данной статье речь пойдет о программе расчета уставок дифференциальной токовой защиты.
Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных. Политика конфиденциальности.
Обзор моделей
конденсатор CBB-60
Существует несколько популярных моделей, которые можно встретить в продаже.
Стоит отметить, что эти модели отличаются не по емкости, а по виду конструкции:
- Металлизированные полипропиленовые варианты исполнения марки СВВ-60. Стоимость подобного варианта исполнения около 300 рублей.
- Пленочные марки НТС стоят несколько дешевле. При одинаковой емкости, стоимость составляет около 200 рублей.
- Э92 – продукция отечественных производителей. Их стоимость небольшая – порядком 120-150 рублей при той же емкости.
Существуют и другие модели, зачастую они отличаются типом используемого диэлектрика и видом изоляционного материала.
Кодовая маркировка, дополнение
В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.
А. Маркировка 3 цифрами
Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.
Код | Емкость | Емкость | Емкость |
109 | 1,0 | 0,001 | 0,000001 |
159 | 1,5 | 0,0015 | 0,000001 |
229 | 2,2 | 0,0022 | 0,000001 |
339 | 3,3 | 0,0033 | 0,000001 |
479 | 4,7 | 0,0047 | 0,000001 |
689 | 6,8 | 0,0068 | 0,000001 |
100* | 10 | 0,01 | 0,00001 |
150 | 15 | 0,015 | 0,000015 |
220 | 22 | 0,022 | 0,000022 |
330 | 33 | 0,033 | 0,000033 |
470 | 47 | 0,047 | 0,000047 |
680 | 68 | 0,068 | 0,000068 |
101 | 100 | 0,1 | 0,0001 |
151 | 150 | 0,15 | 0,00015 |
221 | 220 | 0,22 | 0,00022 |
331 | 330 | 0,33 | 0,00033 |
471 | 470 | 0,47 | 0,00047 |
681 | 680 | 0,68 | 0,00068 |
102 | 1000 | 1,0 | 0,001 |
152 | 1500 | 1,5 | 0,0015 |
222 | 2200 | 2,2 | 0,0022 |
332 | 3300 | 3,3 | 0,0033 |
472 | 4700 | 4,7 | 0,0047 |
682 | 6800 | 6,8 | 0,0068 |
103 | 10000 | 10 | 0,01 |
153 | 15000 | 15 | 0,015 |
223 | 22000 | 22 | 0,022 |
333 | 33000 | 33 | 0,033 |
473 | 47000 | 47 | 0,047 |
683 | 68000 | 68 | 0,068 |
104 | 100000 | 100 | 0,1 |
154 | 150000 | 150 | 0,15 |
224 | 220000 | 220 | 0,22 |
334 | 330000 | 330 | 0,33 |
474 | 470000 | 470 | 0,47 |
684 | 680000 | 680 | 0,68 |
105 | 1000000 | 1000 | 1,0 |
* Иногда последний ноль не указывают.
В. Маркировка 4 цифрами
Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.
Код | Емкость | Емкость | Емкость |
1622 | 16200 | 16,2 | 0,0162 |
4753 | 475000 | 475 | 0,475 |
С. Маркировка емкости в микрофарадах
Вместо десятичной точки может ставиться буква R.
Код | Емкость |
R1 | 0,1 |
R47 | 0,47 |
1 | 1,0 |
4R7 | 4,7 |
10 | 10 |
100 | 100 |
D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения
В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.
Код | Емкость |
p10 | 0,1 пФ |
Ip5 | 1,5 пФ |
332p | 332 пФ |
1НО или 1nО | 1,0 нФ |
15Н или 15n | 15 нФ |
33H2 или 33n2 | 33,2 нФ |
590H или 590n | 590 нФ |
m15 | 0,15мкФ |
1m5 | 1,5 мкФ |
33m2 | 33,2 мкФ |
330m | 330 мкФ |
1mO | 1 мФ или 1000 мкФ |
10m | 10 мФ |
Кодовая маркировка электролетических конденсаторов для поверхностного монтажа
Приведенные ниже принципы кодовой маркировки применяются такими известными , «Hitachi» и др. Различают три основных способа кодирования
А. Маркировка 2 или 3 символами
Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.
Код | Емкость | Напряжение |
А6 | 1,0 | 16/35 |
А7 | 10 | 4 |
АА7 | 10 | 10 |
АЕ7 | 15 | 10 |
AJ6 | 2,2 | 10 |
AJ7 | 22 | 10 |
AN6 | 3,3 | 10 |
AN7 | 33 | 10 |
AS6 | 4,7 | 10 |
AW6 | 6,8 | 10 |
СА7 | 10 | 16 |
СЕ6 | 1,5 | 16 |
СЕ7 | 15 | 16 |
CJ6 | 2,2 | 16 |
CN6 | 3,3 | 16 |
CS6 | 4,7 | 16 |
CW6 | 6,8 | 16 |
DA6 | 1,0 | 20 |
DA7 | 10 | 20 |
DE6 | 1,5 | 20 |
DJ6 | 2,2 | 20 |
DN6 | 3,3 | 20 |
DS6 | 4,7 | 20 |
DW6 | 6,8 | 20 |
Е6 | 1,5 | 10/25 |
ЕА6 | 1,0 | 25 |
ЕЕ6 | 1,5 | 25 |
EJ6 | 2,2 | 25 |
EN6 | 3,3 | 25 |
ES6 | 4,7 | 25 |
EW5 | 0,68 | 25 |
GA7 | 10 | 4 |
GE7 | 15 | 4 |
GJ7 | 22 | 4 |
GN7 | 33 | 4 |
GS6 | 4,7 | 4 |
GS7 | 47 | 4 |
GW6 | 6,8 | 4 |
GW7 | 68 | 4 |
J6 | 2,2 | 6,3/7/20 |
JA7 | 10 | 6,3/7 |
JE7 | 15 | 6,3/7 |
JJ7 | 22 | 6,3/7 |
JN6 | 3,3 | 6,3/7 |
JN7 | 33 | 6,3/7 |
JS6 | 4,7 | 6,3/7 |
JS7 | 47 | 6,3/7 |
JW6 | 6,8 | 6,3/7 |
N5 | 0,33 | 35 |
N6 | 3,3 | 4/16 |
S5 | 0,47 | 25/35 |
VA6 | 1,0 | 35 |
VE6 | 1,5 | 35 |
VJ6 | 2,2 | 35 |
VN6 | 3,3 | 35 |
VS5 | 0,47 | 35 |
VW5 | 0,68 | 35 |
W5 | 0,68 | 20/35 |
В. Маркировка 4 символами
Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.
С. Маркировка в две строки
Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.
Параллельное соединение
Параллельное соединение характеризуется тем, что все пластины электрических конденсаторов присоединяются к точкам включения и образовывают собой батареи. В таком случае, во время заряда конденсаторов каждый из них будет иметь различное число электрических зарядов при одинаковом количестве подводимой энергии
Схема параллельного крепления
Емкость при параллельной установке рассчитывается исходя из емкостей всех конденсаторов в схеме. При этом, количество электрической энергии, поступающей на все отдельные двухполюсные элементы цепи, можно будет рассчитать, суммировав сумму энергии, помещающейся в каждый конденсатор. Вся схема, подключенная таким образом, рассчитывается как один двухполюсник.
Cобщ = C1 + C2 + C3
Схема — напряжение на накопителях
В отличие от соединения звездой, на обкладки всех конденсаторов попадает одинаковое напряжение. Например, на схеме выше мы видим, что:
VAB = VC1 = VC2 = VC3 = 20 Вольт
Фарад, как единица измерения:
Фарад – единица измерения электрической ёмкости в Международной системе единиц (СИ), названная в честь английского физика Майкла Фарадея. Прежнее название – фарада.
Фарад как единица измерения имеет русское обозначение – Ф и международное обозначение – F.
1 фарад равен электрической ёмкости конденсатора, при которой заряд 1 кулон (Кл) создаёт между обкладками конденсатора напряжение 1 вольт (В).
Если конденсатор ёмкостью в 1 фарад заряжать током 1 ампер, то напряжение на обкладках будет возрастать на 1 вольт каждую секунду.
1 Ф = 1 А · 1 с / 1 В.
Фарад — очень большая ёмкость. Ёмкостью 1Ф обладал бы уединенный шар, радиус которого был бы равен 13 радиусам Солнца. Для сравнения, ёмкость Земли (шара размером с Землю, как уединенного проводника) составляет всего около 700 микрофарад.
В Международную систему единиц фарад введён решением XI Генеральной конференцией по мерам и весам в 1960 году, одновременно с принятием системы СИ в целом. В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы «фарад» пишется со строчной буквы, а её обозначение — с заглавной (Ф). Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием фарада.
Подключение светодиода к 220 вольтам, схемы, примеры (видео, калькулятор)
При конструировании радиоаппаратуры часто встает вопрос о индикации питания. Век ламп накаливания для индикации уже давно прошел, современным и надежным радиоэлементом индикации на настоящий момент является светодиод.
В данной статье будет предложена схема подключения светодиода к 220 вольтам, то есть рассмотрена возможность запитать светодиод от бытовой сети переменного тока — розетки, которая есть в любой благоустроенной квартире. Если вам необходимо будет запитать несколько светодиодов одновременно, то об этом мы также упомянем в нашей статье.
Фактически такие схемы применяются для светодиодных гирлянд или ламп, это немного другое. Фактически здесь необходимо реализовать так называемый драйвер для светодиодов. Итак, давайте не будем все валить в одну кучу. Попробуем разобраться по порядку.
Принцип понижения напряжения питания для светодиода
Для питания низковольтной нагрузки может быть выбрана два пути питания. Первый, это так скажем классический вариант, когда питание снижается за счет резистора. Второй, вариант, который часто используется для зарядных устройств, это гасящий конденсатор.
В этом случае напряжение и ток идут словно импульсами, и эти самые импульсы и должны быть точно подобраны, дабы светодиод, нагрузка не сгорела. Здесь необходимо более детальный расчет чем с резистором. Третий вариант, это комбинированное питание, когда применяется и тот и другой способ понижения напряжения.
Что же, теперь обо всех этих вариантах по порядку.
Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор)
Схема подключения светодиода к 220 вольтам на вид не сложная, принцип ее работы прост. Алгоритм следующий. При подаче напряжения начинает заряжаться конденсатор С1, при этом фактически с одной стороны он заряжается напрямую, а со второй через стабилитрон. Стабилитрон должен соответствовать напряжению свечения светодиода.
Так в итоге полностью заряжается конденсатор. Далее приходит вторая полуволна, когда конденсатор начинает разряжаться. В этом случае напряжение также идет через стабилитрон, который теперь работает в своем штатном режиме и через светодиод. В итоге на светодиод в это время подается напряжение равное напряжению стабилизации стабилитрона.
Здесь все вроде как просто и теоретически реализуется нормально. Однако точные расчеты не столь просты. Ведь по сути надо рассчитать емкость конденсатора, который будет являться в данном случае гасящим. Делается это по формуле.
Прикинем: 3200*0,02/√(220*220-3*3)=0,29 мКФ. Вот какой должен быть конденсатор при напряжении для светодиода 3 вольта, а токе 0,02 А. Вы же можете подставить свои значения и рассчитать свой вариант.
Программа для определения емкости конденсатора по цифровой маркировке
Данная программа позволяет оперативно определить емкость конденсатора по цифровой маркировке. Определение емкости конденсатора выполняется в соответствии со стандартами IEC по таблице 1. Сам принцип определения емкости конденсатора показан на рис.1.
Рис.1 – Определение емкости конденсатора
Рассмотрим на примере определение емкости конденсатора по цифровой маркировке с помощью данной программы. Выберем конденсатор с цифровой маркировкой 104, для данного конденсатора в соответствии с таблицей 1 и представленным методом определения емкости (см.рис.1), емкость составит: 104 = 10 х 104 = 100000 pF = 100 nF = 0,1 µF, для цифровой маркировки 330, емкость составит: 330 = 33 pF = 0,033 nF = 0,000033 µF. Как мы видим, программа правильно определяет емкость конденсатора по цифровой маркировке.
Если же Вам нужно определить емкость конденсатора по цветовой маркировке, воспользуйтесь программой «Конденсатор v1.2».
Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.
Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.
Хотите быстро рассчитать силу тока, напряжение, мощность или другие электрические величины.
Данный калькулятор расчета основных измеряемых величин в электротехнике, выполненный в программе Microsoft.
Содержание 1. Введение2. Функциональность программы:2.1 Расчет токов КЗ в сети 0,4 кВ — трехфазных.
Представляю Вашему вниманию еще одну программу расчета уставок дифференциальной токовой защиты.
В данной статье речь пойдет о программе расчета уставок дифференциальной токовой защиты.
Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных. Политика конфиденциальности.
Таблица перевода емкостей и обозначений конденсаторов
Таблица емкостей и обозначений конденсаторов
μF микрофарады | nF нанофарады | pF пикофарады | Code / Код трех-цифровой |
1μF | 1000nF | 1000000pF | 105 |
0.82μF | 820nF | 820000pF | 824 |
0.8μF | 800nF | 800000pF | 804 |
0.7μF | 700nF | 700000pF | 704 |
0.68μF | 680nF | 680000pF | 624 |
0.6μF | 600nF | 600000pF | 604 |
0.56μF | 560nF | 560000pF | 564 |
0.5μF | 500nF | 500000pF | 504 |
0.47μF | 470nF | 470000pF | 474 |
0.4μF | 400nF | 400000pF | 404 |
0.39μF | 390nF | 390000pF | 394 |
0.33μF | 330nF | 330000pF | 334 |
0.3μF | 300nF | 300000pF | 304 |
0.27μF | 270nF | 270000pF | 274 |
0.25μF | 250nF | 250000pF | 254 |
0.22μF | 220nF | 220000pF | 224 |
0.2μF | 200nF | 200000pF | 204 |
0.18μF | 180nF | 180000pF | 184 |
0.15μF | 150nF | 150000pF | 154 |
0.12μF | 120nF | 120000pF | 124 |
0.1μF | 100nF | 100000pF | 104 |
0.082μF | 82nF | 82000pF | 823 |
0.08μF | 80nF | 80000pF | 803 |
0.07μF | 70nF | 70000pF | 703 |
0.068μF | 68nF | 68000pF | 683 |
0.06μF | 60nF | 60000pF | 603 |
0.056μF | 56nF | 56000pF | 563 |
0.05μF | 50nF | 50000pF | 503 |
0.047μF | 47nF | 47000pF | 473 |
μF микрофарады | nF нанофарады | pF пикофарады | Code / Код трех-цифровой |
0.04μF | 40nF | 40000pF | 403 |
0.039μF | 39nF | 39000pF | 393 |
0.033μF | 33nF | 33000pF | 333 |
0.03μF | 30nF | 30000pF | 303 |
0.027μF | 27nF | 27000pF | 273 |
0.025μF | 25nF | 25000pF | 253 |
0.022μF | 22nF | 22000pF | 223 |
0.02μF | 20nF | 20000pF | 203 |
0.018μF | 18nF | 18000pF | 183 |
0.015μF | 15nF | 15000pF | 153 |
0.012μF | 12nF | 12000pF | 123 |
0.01μF | 10nF | 10000pF | 103 |
0.0082μF | 8.2nF | 8200pF | 822 |
0.008μF | 8nF | 8000pF | 802 |
0.007μF | 7nF | 7000pF | 702 |
0.0068μF | 6.8nF | 6800pF | 682 |
0.006μF | 6nF | 6000pF | 602 |
0.0056μF | 5.6nF | 5600pF | 562 |
0.005μF | 5nF | 5000pF | 502 |
0.0047μF | 4.7nF | 4700pF | 472 |
0.004μF | 4nF | 4000pF | 402 |
0.0039μF | 3.9nF | 3900pF | 392 |
0.0033μF | 3.3nF | 3300pF | 332 |
0.003μF | 3nF | 3000pF | 302 |
0.0027μF | 2.7nF | 2700pF | 272 |
0.0025μF | 2.5nF | 2500pF | 252 |
0.0022μF | 2.2nF | 2200pF | 222 |
0.002μF | 2nF | 2000pF | 202 |
0.0018μF | 1.8nF | 1800pF | 182 |
μF микрофарады | nF нанофарады | pF пикофарады | Code / Код трех-цифровой |
0.0015μF | 1.5nF | 1500pF | 152 |
0.0012μF | 1.2nF | 1200pF | 122 |
0.001μF | 1nF | 1000pF | 102 |
0.00082μF | 0.82nF | 820pF | 821 |
0.0008μF | 0.8nF | 800pF | 801 |
0.0007μF | 0.7nF | 700pF | 701 |
0.00068μF | 0.68nF | 680pF | 681 |
0.0006μF | 0.6nF | 600pF | 621 |
0.00056μF | 0.56nF | 560pF | 561 |
0.0005μF | 0.5nF | 500pF | 52 |
0.00047μF | 0.47nF | 470pF | 471 |
0.0004μF | 0.4nF | 400pF | 401 |
0.00039μF | 0.39nF | 390pF | 391 |
0.00033μF | 0.33nF | 330pF | 331 |
0.0003μF | 0.3nF | 300pF | 301 |
0.00027μF | 0.27nF | 270pF | 271 |
0.00025μF | 0.25nF | 250pF | 251 |
0.00022μF | 0.22nF | 220pF | 221 |
0.0002μF | 0.2nF | 200pF | 201 |
0.00018μF | 0.18nF | 180pF | 181 |
0.00015μF | 0.15nF | 150pF | 151 |
0.00012μF | 0.12nF | 120pF | 121 |
0.0001μF | 0.1nF | 100pF | 101 |
0.000082μF | 0.082nF | 82pF | 820 |
0.00008μF | 0.08nF | 80pF | 800 |
0.00007μF | 0.07nF | 70pF | 700 |
μF микрофарады | nF нанофарады | pF пикофарады | Code / Код трех-цифровой |
0.000068μF | 0.068nF | 68pF | 680 |
0.00006μF | 0.06nF | 60pF | 600 |
0.000056μF | 0.056nF | 56pF | 560 |
0.00005μF | 0.05nF | 50pF | 500 |
0.000047μF | 0.047nF | 47pF | 470 |
0.00004μF | 0.04nF | 40pF | 400 |
0.000039μF | 0.039nF | 39pF | 390 |
0.000033μF | 0.033nF | 33pF | 330 |
0.00003μF | 0.03nF | 30pF | 300 |
0.000027μF | 0.027nF | 27pF | 270 |
0.000025μF | 0.025nF | 25pF | 250 |
0.000022μF | 0.022nF | 22pF | 220 |
0.00002μF | 0.02nF | 20pF | 200 |
0.000018μF | 0.018nF | 18pF | 180 |
0.000015μF | 0.015nF | 15pF | 150 |
0.000012μF | 0.012nF | 12pF | 120 |
0.00001μF | 0.01nF | 10pF | 100 |
0.000008μF | 0.008nF | 8pF | 080 |
0.000007μF | 0.007nF | 7pF | 070 |
0.000006μF | 0.006nF | 6pF | 060 |
0.000005μF | 0.005nF | 5pF | 050 |
0.000004μF | 0.004nF | 4pF | 040 |
0.000003μF | 0.003nF | 3pF | 030 |
0.000002μF | 0.002nF | 2pF | 020 |
0.000001μF | 0.001nF | 1pF | 010 |
μF микрофарады | nF нанофарады | pF пикофарады | Code / Код трех-цифровой |
Маркировка конденсаторов
Калькулятор емкости последовательного соединения конденсаторов
Калькулятор позволяет рассчитать емкость нескольких конденсаторов, соединенных последовательно.
Пример.
Рассчитать эквивалентную емкость двух соединенных последовательно конденсаторов 10 мкФ и 5 мкФ.
Введите значения емкости в поля C1 и C 2, добавьте при необходимости новые поля, выберите единицы емкости (одинаковые для всех полей ввода) в фарадах (Ф), миллифарадах (мФ), микрофарадах (мкФ), пикофарадах (пФ), нанофарадах (нФ) и нажмите на кнопку Рассчитать
1 мФ = 0,001 Ф. 1 мкФ = 0,000001 = 10⁻⁶ Ф. 1 нФ = 0,000000001 = 10⁻⁹ Ф. 1 пФ = 0,000000000001 = 10⁻¹² Ф.
В соответствии со вторым правилом Кирхгофа, падения напряжения V₁
,V₂ andV₃ на каждом из конденсаторов в группе из трех соединенных последовательно конденсаторов в общем случае различные и общая разность потенциаловV равна их сумме:
Метод 5: измерение ёмкости с помощью модуля CVD
Модуль CVD, емкостной делитель напряжения, можно найти в некоторых микроконтроллерах PIC. Это еще одна идея Microchip для создания сенсорных клавиатур, например в семействе PIC18FQ41.
Предположим, имеется конденсатор емкостью 1 нФ, заряженный напряжением 5 В. Подключим к нему второй конденсатор емкостью 1 нФ. Какое напряжение будет у обоих? Правильный ответ — 2,5 В. Теперь возьмем два других конденсатора: 10 нФ и 22 нФ. Первый заряжен на 5 В, второй замкнут на массу. Затем соединяем их обоих вместе. Какое будет напряжение? 1,5625 В. Теперь зарядим второй конденсатор до 5 В, разрядим первый и подключим два. Какое будет напряжение? 3,4375 В. Модуль CVD выполняет именно это измерение, при этом конденсатор выборки АЦП (плюс дополнительно подключенные емкости внутри микроконтроллера) действует как первый конденсатор, а все что подключено к выводу АЦП, на котором выполняется измерение, как конденсатор 2.
Модуль CVD сначала автоматически загружает внутреннюю емкость, подключает внешнюю емкость и измеряет ее, затем разряжает внутреннюю емкость, заряжает внешнюю емкость и выполняет второе измерение. Результаты автоматически вычитаются друг из друга, а полученное значение сравнивается с заданным пороговым значением — таким образом, модуль в основном используется для управления сенсорными кнопками, но вы также можете измерить значение присоединенной внешней емкости как изменение в дифференциальное напряжение. Но тут измерение будет менее точным, чем измерение CTMU.
Примеры расчетов
Электротехнические и радиотехнические калькуляторы
Электроника
— область физики и электротехники, изучающая методы конструирования и использования электронной аппаратуры и электронных схем, содержащих активные электронные элементы (диоды, транзисторы и интегральные микросхемы) и пассивные электронные элементы (резисторы, катушки индуктивности и конденсаторы), а также соединения между ними.Радиотехника — инженерная дисциплина, изучающая проектирование и изготовление устройств, которые передают и принимают радиоволны в радиочастотной области спектра (от 3 кГц до 300 ГГц), также обрабатывают принимаемые и передаваемые сигналы. Примерами таких устройств являются радио- и телевизионные приемники, мобильные телефоны, маршрутизаторы, радиостанции, кредитные карточки, спутниковые приемники, компьютеры и другое оборудование, которое передает и принимает радиосигналы. В этой части Конвертера физических единиц TranslatorsCafe.com представлена группа калькуляторов, выполняющих расчеты в различных областях электротехники, радиотехники и электроники.
Основные параметры
Основными параметрами конденсаторов являются:
- номинальная емкость (Сном), которая обычно указывается на корпусе конденсатора,
- температурный коэффициент емкости (ТКЕ)
- номинальное напряжение (Uном).
Номинальное напряжение — это максимальное допустимое постоянное напряжение, при котором конденсатор способен работать длительное время, сохраняя параметры неизменными при всех установленных для него температурах. На конденсаторах, в основном, указано номинальное рабочее напряжение при постоянном токе.
При работе конденсатора в схемах переменного тока его номинальное напряжение, указанное на корпусе, должно в 1,5…2 раза превышать предельно допустимое действующее переменное напряжение цепи.
На корпусе конденсатора обычно указывают его тип, напряжение, номинальную емкость, допустимое отклонение емкости, ТКЕ и дату изготовления.
Кодовая или цифровая маркировка конденсаторов
Кодировка конденсаторов тремя цифрами
Первые две цифры указывают на значение емкости в пикофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пф первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пф, код0R5 — 0.5 пФ.
* Иногда последний ноль не указывают.
Смешанная буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения
В отличие от первых трех параметров, которые маркируются в соответствии со стандар- тами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.
Блиц-советы
При подключении к сети в 660 В некоторые используют метод комбинированного запускаСамой важное при «звездном» подключении определить путь обмотки, потому что если не угадали хоть одну пару обмоток и, допустим начало-конец, начало-конец, конец-начало, то работа будет плохой и это будет сразу же видно, есть также возможность спалить двигатель в этом случае.
Не во всех двигателях есть маркировка клемм, чаще всего помечена «масса», остальные нужно «прозванивать» с помощью мультиметра, либо же читать инструкцию, зачастую производители указывают данную информацию там.
Все зависит от напряжения сети в которую будет включен двигатель; если сеть 220 В, то нужно использовать схему – треугольник, а вот для 380 В в ходу будет – звезда.
При подключении к сети в 660 В некоторые используют метод комбинированного запуска. То есть запуск происходит на «треугольнике», а при достижении необходимой мощности идет переход на звезду
Но это все-таки рискованный случай, может произойти сгорание обмоток. Лучше использовать специализированные двигатели, которые работают при заданном напряжении.
Для того чтоб изменить направление вращения ротора в статоре нужно подсоединить конденсатор не к нулю, а к фазе. Это также является маячком при неправильном подключении.
Смешанный способ
Сочетает в себе параллельное и последовательное подключения.
При этом для участков с последовательным соединением характерны свойства последовательного соединения, а для участков с параллельным — свойства параллельного.
Оно используется, когда ни электроемкость, ни номинальное напряжение приборов, имеющихся в продаже, не подходят для задачи. Обычно такая проблема возникает в радиотехнике.
Чтобы определить общее значение электроемкости, нужно будет сначала определить это же значение для параллельно соединенных двухполюсников, а потом для их последовательного соединения.