Что такое анод и катод, в чем их практическое применение

Содержание:

Анод на аккумуляторе, гальваническом элементе, в диоде и в других приборах. Анод при электролизе водного и иного раствора. Процессы на аноде:

Анод (др.-греч. ἄνοδος – «движение вверх») – это электрод некоторого прибора, в который втекает электрический ток (в его конвенциональном понимании как поток положительных зарядов), в противоположность катоду из которого он вытекает.

Анод в электрохимии (при электролизе) – это электрод, на котором происходят реакции окисления. Например, при электролитическом рафинировании металлов (меди, никеля, цинка и пр.) либо при нанесении на поверхность изделия слоя металла электрохимическим способом на аноде происходит разрушение (растворение) анода, в результате которого металл с примесями растворяется и осаждается в очищенном виде на катоде или на поверхности изделия, выступающего в качестве катода.

Основное распространение получили аноды из цинка, никеля, меди (среди которых отдельно выделяют медно-фосфористые, марки АМФ), кадмия, бронзы, олова, сплава свинца и сурьмы, серебра, золота и платины. Аноды из недрагоценных металлов применяются для повышения коррозионной стойкости, повышения эстетических свойств предметов и др. целей. Аноды из драгоценных металлов применяются гальваническим производством для повышения электропроводности изделий и др.

Анод в вакуумных электронных приборах – это электрод, который притягивает к себе летящие электроны, испущенные катодом вследствие термоэлектронной эмиссии. В электронных лампах и рентгеновских трубках конструкция анода такова, что он полностью поглощает электроны. А в электронно-лучевых приборах анод является элементом электронной пушки. Он поглощает лишь часть летящих электронов, формируя после себя электронный луч.

Термоэлектронная эмиссия – это явление выхода электронов из твёрдого тела, металла или карбидов или боридов переходных металлов в свободное пространство, обычно в вакуум или разрежённый газ при нагреве его до высокой температуры. Заметная эмиссия электронов наблюдается при нагреве чистых металлов только до температур свыше 900 К.

Анод в полупроводниковом приборе (диоде, тиристоре) – это электрод, подключенный к положительному полюсу источника тока, когда при приложении прямого напряжения прибор открыт (то есть имеет маленькое сопротивление и через прибор течёт прямой ток).

Анод химического источника тока (в аккумуляторе и ином гальваническом элементе) в соответствии с ГОСТ 15596-82 «Источники тока химические. Термины и определения (с Изменением № 1)» – это электрод химического источника тока, на котором протекают окислительные процессы.

Гальванотехника

Процессы осаждения металлов в результате химической реакции под воздействием электрического тока (при электролизе) называют гальванотехникой. Таким образом мир получил посеребренные, золоченные, хромированные или покрытые другими металлами украшения и детали. Этот процесс используют как в декоративных, так и в прикладных целях – для улучшения стойкости к коррозии различных узлов и агрегатов механизмов.

Принцип действия установок для нанесения гальванического покрытия лежит в использовании растворов солей элементов, которыми будут покрывать деталь, в качестве электролита.

В гальванике анод также является электродом, к которому подключаются плюсовой вывод источника питания, соответственно катод в этом случае – это минус. При этом металл осаждается (восстанавливается) на минусовом электроде (реакция восстановления). То есть если вы хотите сделать позолоченное кольцо своими руками – подключите к нему минусовой вывод блока питания и поместите в ёмкость с соответствующим раствором.

Подробности

Процесс электролиза или заряда аккумулятора

Такие процессы походи и обратные гальваническим элементам, так как тут не энергия попадает за счет реакции химического характера, а даже наоборот – химическая реакция будет происходить благодаря внешнему источнику электричества. В таком случае плюсом источника питания все еще будут называть катодом, а минус анодом. А вот контакты заряжаемого элемента гальваники или электроды электролизера уже способны носить противоположные наименования, и следует разобраться, почему.

Так как ток от положительного вывода источника питания будет поступать на положительный вывод аккумулятора – последний кстати уже не сможет быть катодом. Ссылаясь на сказанное выше, можно сделать выводы, что в таком случае аккумуляторные электроды при зарядке символически меняют местами. В таком случае через электрод заряжаемого элемента гальваники, в который втекает ток электричества, называют анодом. Итак, при зарядке плюс аккумулятора станет анодом, а минус будет катодом.

Гальванотехника

Процессы металлического осаждения в результате реакции химического типа под действием электрического тока (при процессе электролиза) называют гальванотехникой. Получается, что мир начал получать золоченные, посеребренные, хромированные или даже покрытые иными металлами украшения, а еще детали. Такой процесс применяют в роли декоративных, а еще в прикладных целях – для того, чтобы улучшать устойчивость к коррозии разных узлов и механизмов агрегатов. Метод работы действия установок для нанесения покрытия гальванического типа будет лежать в применении растворов солей элементов, которыми станут покрывать деталь, в роли электролита.

Определить, где анод, а где катод в гальванике тоже важно. Именно в этом случае анод будет являться электродом, к которому подключаются положительный вывод источника питания, а получается, катод в таком случае станет минусом

При этом металл будет осаждаться (восстанавливаться) на минусовом электроде (речь идет про реакцию восстановления). Получается, что есть вы желаете изготовить позолоченное кольцо собственноручно – подключите к нему отрицательный вывод блочка питания и поместите в емкость с требуемым растворителем.

В электронике

Ножки или электроды полупроводниковых, а еще вакуумных электронных устройств крайне часто называют катодом и анодом. Предлагаем рассмотреть условное обозначение графического типа полупроводникового диода по схеме. Как видите, анод у диода подключают до плюса батареи. Он так называется по той причине – в такой вывод у диода в любом случае будет втекать ток. На настоящем элементе на катоде будет маркировка в воде точки или полоски. Со светодиодом все аналогично, и на 0.5 см светодиодах внутренности видны через колбу. Та половина, что больше является катодом. Аналогичным образом будет обстоять ситуация даже с тиристором, назначение вывод и однополярное использование таких трехногих компонентов делает его управляемым диодом.

Гальванотехника

Процессы осаждения металлов в результате химической реакции под воздействием электрического тока (при электролизе) называют гальванотехникой. Таким образом мир получил посеребренные, золоченные, хромированные или покрытые другими металлами украшения и детали. Этот процесс используют как в декоративных, так и в прикладных целях – для улучшения стойкости к коррозии различных узлов и агрегатов механизмов.

Принцип действия установок для нанесения гальванического покрытия лежит в использовании растворов солей элементов, которыми будут покрывать деталь, в качестве электролита.

В гальванике анод также является электродом, к которому подключаются плюсовой вывод источника питания, соответственно катод в этом случае – это минус. При этом металл осаждается (восстанавливается) на минусовом электроде (реакция восстановления). То есть если вы хотите сделать позолоченное кольцо своими руками – подключите к нему минусовой вывод блока питания и поместите в ёмкость с соответствующим раствором.

Применение

Электроды в качестве анода и катода наиболее часто применяются:

  • в электрохимии;
  • вакуумных электронных приборах;
  • полупроводниковых элементах.

Рассмотрим в общих чертах сферы применения анодов и катодов.

В электрохимии

В данной сфере анод и катод являются ключевыми понятиями, в процессе прохождения электрохимических реакций, используемых в основном для восстановления металлов. Такие реакции называют электролизом. Использование процессов электролиза позволяет получать чистые металлы, так как на катоде образуются атомы только того металла, положительные ионы которого содержатся в растворе электролита.

Методом электролиза наносят очень тонкое цинковое покрытие стальных листов и деталей любой конфигурации. Гальваническое покрытие эффективно защищает металл от коррозии.

В вакуумных электронных приборах

Примером вакуумных приборов служат радиоэлектронные лампы, электронно-лучевые трубки, кинескопы телевизоров. Они работают по одному и тому же принципу: Разогретый катод испускает электроны, которые устремляются к аноду с высоким положительным электрическим потенциалом.

Образование электронов на раскаленном электроде называется термоэмиссией, а электрический ток, возникающий между катодом и анодом, называется термоэмиссионным. Ценность таких приборов в том, что они проводят ток только в одном направлении – от катода к аноду.

Добавление сетки между электродами позволяет регулировать параметры тока в широких пределах, путем изменения напряжения на сетке. Такие вакуумные лампы используются в качестве усилителей сигналов. В данное время вакуумные приборы используются довольно редко, так как их с успехом заменяют миниатюрные полупроводниковые диоды и транзисторы, часто выполненные на монокристалле в виде микросхемы.

В полупроводниковых приборах

Электронные детали на основе полупроводников ценятся малым потреблением тока и небольшими размерами. Они почти вытеснили вакуумные лампы из употребления. Выводы полупроводниковых приборов традиционно называют анодами и катодами.

При всех плюсах полупроводников, у этих приборов есть недостаток – они «шумят». В усилителях большой мощности эти шумы становятся заметными. В качественной усилительной аппаратуре по-прежнему применяются вакуумные лампы.

Электронно-лучевые кинескопы в современных телевизорах вытесняются экранами с LED подсветкой. Они более экономичны, отлично передают цветовую палитру, позволяют сделать приемник почти плоским.

Графеновые нанотрубки TUBALL™ – ключ к использованию кремния

Графеновые нанотрубки TUBALL (или одностенные углеродные нанотрубки) решают ключевую и фундаментальную проблему кремниевых анодов. Благодаря своей непревзойденной электропроводности, высокой прочности, гибкости, рекордному отношению длины к диаметру и способности образовывать трехмерные сети внутри материалов при сверхнизких концентрациях, при введении в анод на основе кремния графеновые нанотрубки TUBALL покрывают поверхность частиц и создают между ними высокопроводящие и прочные связи.

Эти соединения настолько плотные, длинные, электропроводные и прочные, что даже когда частицы кремниевого анода расширяются в объеме и начинают трескаться, графеновые нанотрубки удерживают их связанными. Это предохраняет анод от преждевременного выхода из строя – нанотрубки увеличивают срок его службы до уровня, соответствующего строгим требованиям производителей электромобилей.

Полярность светодиода как определить плюс и минус

При использовании светодиодов в создании различных схем их необходимо установить правильно. Пайка в большинстве случаев проблем не создает, определить полярность немного сложнее, если нет опыта работы с тестирующим оборудованием.

Как определить полярность тестером мультиметром

Проще всего проверить светодиод мультиметром. При подключении щипов в режиме «прозвонка» к электродам можно получить 2 результата: светодиод светится и выдает на экран число, зависящее от цвета излучения, или показывает очень большое число. При первом варианте можно сделать вывод, что источник света исправен и подключен к мультиметру правильно (плюс к плюсу, минус к минусу).

Второй метод использования мультиметра – переключение на проверку сопротивления. Если красный щуп касается плюса, черный – минуса, на экране появляется значение в пределах 1600–1800.

Если у мультиметра есть отсек PNP, для определения полярности светодиода требуются отсеки E (эмиттер – «+») и C (коллектор – «-»). Источник света светится, если катод вставлен в «C», анод – в «E».

Если используется отсек мультиметра NPN, светодиод светиться, если ножки меняются местами.

По внешнему виду

В производстве светодиодов используются разные корпусы. Широко применяются DIP-элементы с цилиндрическим корпусом различного диаметра. Изготавливается множество SMD для поверхностного монтажа. Свехяркие источники света отличаются размерами корпусов и кристаллов. Опытный радиолюбитель определяет катод и анод по внешним признакам.

  • длиннее ножка анода;
  • силуэт в колбе меньше у анода, форма катода напоминает флажок;
  • у источника с мощностью более 1 Вт на ножке анода есть маркировка «+».
  • катод обозначается срезом на корпусе;
  • теплоотвод на обратной стороне корпуса располагается ближе к аноду;
  • пиктограмма «П» к аноду обращена верхней полкой, верх пиктограммы «Т» обращен к катоду.

Некоторые производители наносят на корпуса SMD-светодиодов определенные символы, которые позволяют определить полярность.

Важно! Существуют SMD, изготовленные по другому принципу (некоторые производители не соблюдают стандарты). На сложных моделях всегда имеются обозначения «+» и «−»

Любая неполупроводниковая радиолампа (стабилитрон) состоит из анода, катода и сетки. Катодом всегда служит разогретый электрод, изготовленный в форме цилиндра. Электроны при термоэмиссии двигаются к аноду (коробочке или пластине) – вольфрамовому проводнику с большим сопротивлением.

Для определения работоспособности стабилитрона используется мультиметр в режиме прозвона. Если положительный щуп приложить к аноду, отрицательный – к катоду, стабилитрон откроется, на экране будет видно значение напряжения. Если поменять щупы местами, стабилитрон закроется, на экране появится цифра 1.

Путем подачи питания

Чтобы использовать тестирование с помощью подключения к питанию, требуется источник с напряжением 3-6 В и резистор с любой мощностью на 300–470 Ом. Резистор припаивается к одной ножке мультиметра. Затем нужно коснуться щупами выводов. Светодиод светится, если плюсовой щуп касается анода, минусовой – катода.

Технической документации

Большой объем информации (размеры, цоколевку, электрические параметры) о полупроводниковом источнике света предоставляют производители в технической документации. Она выдается при покупке больших партий электронных элементов вместе с другой сопроводительной документацией. Если покупать один или несколько светодиодов, продавец техдокументацию не предоставит.

Если известна марка изделия, данные можно найти в справочниках и сети интернет.

На схеме полупроводниковый источник света обозначается пиктограммой в форме треугольника, на вершине которого начерчена линия, перпендикулярная основанию. Вершина направлена на катод. Для обозначения светодиода используются 2 стрелки над изображением.

Почему нужно уметь отличать анод от катода

Определение «плюса» и «минуса» светодиода необходимо для проверки имеющейся пиктограммы там, где она отсутствует. Часто это случается на новых, «б-ушных», выпаянных из старых схем, диодах. В этом случае нет никакой гарантии, что производитель дешевых элементов не ошибся в их маркировке. Поэтому гарантии соответствия имеющейся маркировки никакой нет.

Подключение без проведения предварительного тестирования может завершиться пробивкой LED и не работающей электрической цепью. Произойдёт это из-за того, что ток диода движется в одном направлении (кроме двухцветников, моргающих светодиодов или ИК). Только верная распайка позволит получить нормальную, рабочую электросхему.

Когда менять анод протекторной защиты бойлера

На поверхности магниевого анода через год эксплуатации видна коррозия — окислы, которые осыпаются и постепенно растворяют, разрушают электрод . В результате, длина и диаметр анода уменьшились.

По мере эрозии, аноды подлежат регулярной замене. Критерии, по которым определяют необходимость замены анода, обычно указаны в заводской инструкции. Производители электроводонагревателей рекомендуют через один год с начала эксплуатации выполнить осмотр и оценку степени износа анода и величины отложений накипи на ТЭНах. По результатам оценки определяют периодичность замены анода и чистки от накипи.

Анод протекторной защиты  оказывает незначительное влияние на образование накипи на ТЭНах водонагревателя. Увеличение интенсивности электрохимических процессов на поверхности металла способствует некоторому разрыхлению слоя накипи. Камень из солей жесткости становится менее плотным и легче отделяется от металла.

Вода + анод = сероводород

Советы специалиста

Средний срок службы типового магниевого элемента равен двум годам. Однако в частных случаях эта цифра может принимать другие значения – 1 год или 3, чаще всего зависит от качества воды. Это касается только моделей водонагревателей, оснащенных стальными колбами.

На отечественном рынке также представлены бойлеры, оборудованные внутренней колбой из нержавейки

С учетом всех этих моментов специалисты рекомендуют обращать внимание на следующие детали:

  • По возможности чаще следует проверять работу бойлерного агрегата на слух.
  • Если слышно шипение во время нагрева, в точке крепления нагревательного элемента ухудшился контакт, покрытый изолирующим налетом.
  • По истечении некоторого времени желательно заглянуть во внутреннее пространство бойлера. Обнаружив 50%-ое разрушение анода, нужно искать ему замену.
  • Следует стараться чистить бойлер несколько чаще, чем это указано в инструкции по эксплуатации на изделия.

Как определить что минус, а что плюс (у диода)

Особенность диодов такова, что они проводят заряд только в одном направлении. Чтобы не ошибиться, обычно на корпусе обозначены маркировки. В случае отсутствия маркировок чтобы узнать, как все-таки определить полярности анода и катода у диодов, применяют следующие методы.

  1. Использование мультиметра. Прибор включается в тест-режим. Если на экране засветились цифровые значения — диод подсоединен по прямому маршруту. Красный провод идет к аноду «+», черный к катоду «-».
  2. Внешние признаки:
  • символы «+» и «-» на корпусе;
  • ближе к аноду нанесены обозначения в форме точек или кольцевых линий;
  • вытянутая форма устройства — плюс, приплюснутый — минус;
  1. Включение питания. Собирается простейшая схема, которая состоит из батарейки и лампы.

Вам это будет интересно Особенности SMD конденсаторов

Обратите внимание! Если включить лампочку, и она начнет гореть — «+» батарейки соединен с положительной полярностью, это есть анод, и прибор будет пропускать через себя ток. Если свет не загорелся, то значит, соединили с отрицательной полярностью — это катод и, соответственно, тока не будет

  1. Инструкция по эксплуатации. Производитель вместе с товаром прилагает подробную техническую документацию, где прописаны все необходимые параметры.

Определение полюсов с помощью лампочки

Назначение диода

Полупроводниковые диодные элементы присутствуют практически во всех бытовых электроприборах. Светодиоды используются в производстве осветительных приборов и LED-телевизоров.

Полупроводниковые диоды классифицируются по:

  • материалу кристалла (кремний, селен, фосфид индия, германий);
  • размерам (микросплавные, точечные, плоские);
  • технологии производства p-n перехода (диффузионные, сплавные, эпитаксиальные);
  • частоте (низкочастотные, высокочастотные, сверхвысокочастотные, импульсивные);
  • сфере использования (выпрямительные и специальные).

Диоды-выпрямители предназначены для преобразования переменного напряжения в постоянное. В схему устанавливаются в виде диодного моста, который можно использовать в радиоаппаратуре, блоке питания, зарядном устройстве.

Выпрямители делятся на:

  • слаботочные (до 0,3 ампер);
  • средней мощности (0,3-10 ампер);
  • силовые (10-100 000 А, до 6 кВ).

Полупроводниковые специальные диодные элементы:

  • варикапы (емкостные диоды);
  • тиристоры (с дополнительным выводом для переключения в открытое состояние);
  • симисторы (ток пропускают в 2-х направлениях);
  • стабилитроны (стабилизируют напряжение от 2 вольт в состоянии пробоя, отдельный вид стабиисторы (нормисторы) для напряжения 0,7-2 вольт);
  • диоды Шоттки (для низковольтных схем в паре со стабилитроном);
  • туннельные диодные элементы (с низким отрицательным сопротивлением);
  • динисторы (не содержат управляющих электродов, монтируются в переключатели);
  • магнитодиоды (вольт-амперные характеристики меняются в магнитном поле, монтируются в датчики движения, контрольные приборы);
  • фотодиоды (преобразуют энергию света в электрическую);
  • светодиоды (превращают электрическую энергию в свет).

Анод и катод: где плюс, а где минус?

Из сказанного выше следует, что ток всегда течет в направлении от анода к катоду. Вывод один – на анод поступает плюс, а катод подсоединяется к минусу. Придерживаясь этого правила можно безошибочно определить, где плюс, а где минус.

Вот так можно запомнить:)

В гальванотехнике на катоде происходит реакция восстановления. То есть положительные ионы из раствора оседают на катоде. По этому признаку определяем знак минус.

Как определить катод и анод радиодеталей мы рассмотрели выше. Если есть схема устройства то по ней довольно легко можно указать направление тока, и, соответственно, назначение электродов. При отсутствии схемы пользуйтесь признаками и метками на корпусах деталей.

Отдельно заострю ваше внимание на элементах питания. Обычно «+» указывается на гальванических устройствах, а на аккумуляторах часто маркируются обе клеммы

В аккумуляторах автомобильного типа плюсовую клемму делают толще. По этому признаку также можно определить полярность полюсов.

В качестве выводов см. рисунок 6.

Рис. 6. Выводы

Цифрами обозначено:

  • 1– анод;
  • 2 – электролит;
  • 3 – катод;
  • 4 – источник тока.

Способы устранения запаха сероводорода из воды бойлера

В баке водонагревателя могут присутствовать сульфатредуцирующие бактерии как в иле, так и в воде, одновременно. Но обычно, наиболее активной является какая-то одна разновидность бактерий. В зависимости от того, какая разновидность сульфатвосстанавливающих бактерий в баке бойлера является причиной запаха сероводорода, выбирают и способ избавления от запаха.

Устранение бактерий, которые живут в слое ила

Бывает достаточно выполнить хотя бы одно из следующих мероприятий:

  • Проще всего поднять температуру воды выше 70 оС и попользоваться такой водой суток трое, до исчезновения запаха. В дальнейшем постоянно держать температуру воды в бойлере выше 55 оС. Периодически рекомендуется повышать температуру выше 70 оС.
  • Регулярно проводить чистку бойлера от накипи и отложений ила на дне.
  • Принять меры по снижению количества органических загрязнений в водопроводной воде. Для этого можно изменить горизонт забора воды — вместо колодца брать воду из скважины или углубить скважину. Установить фильтры по очистке водопроводной воды от механических и органических загрязнений.

Устранение бактерий из воды бойлера

Для подавления сульфатредуцирующих бактерий, живущих в воде бойлера, бывает достаточно выполнить:

  • Попробуйте поднять температуру воды выше 70 оС и попользоваться такой водой суток трое, до исчезновения запаха. В дальнейшем постоянно держать температуру воды в бойлере выше 55 оС. Периодически рекомендуется повышать температуру выше 70 оС. Но этот способ помогает не всегда. Бактерии, живущие в воде бойлера, часто бывают устойчивы к таким температурам.
  • Активность сульфатвосстанавливающих бактерий подавляется если снизить содержание молекулярного водорода в воде. Для этого, оптимизируют режим работы протекторной защиты. Замена магниевого анода на алюминиевый, исключает «перезащиту», что снижает содержание водорода в воде. О замене анодов читайте в начале этой статьи.

Общие меры борьбы с бактериями в бойлере

Следующие меры способны подавить развитие бактерий как в воде, так и в иле:

  • Аэрация, насыщение воздухом, водопроводной воды приводит к увеличению содержания в воде свободного кислорода. В результате, анаэробная среда обитания бактерий меняется на менее благоприятную для их жизни.
  • Водопроводную воду обеззараживать способами, антибактериальное действие которых сохраняется длительное время после обработки — хлорирование и т.п. Обработка воды ультрафиолетом для этого не подходит.
  • Принять меры по снижению количества растворимых соединений серы в водопроводной воде. Для этого можно изменить горизонт забора воды — вместо колодца брать воду из скважины или углубить скважину. Эти меры следует выбирать после анализа источника воды на содержание сульфатов.

  • Делаем на участке дорожки и площадки из плитки и брусчатки
  • Все что вы хотели узнать о мансардных окнах
  • Как правильно утеплить мансарду
  • Водосток с крыши, водосточные желоба и трубы
  • Строим дом, стены из бетонных блоков
  • Порядок и этапы строительства частного загородного дома, коттеджа
  • Звуко- шумоизоляция потолка в квартире
  • Как проверить обмотку электро оборудования

Подробно о полярностях светодиодных ламп

Несоблюдение полярности и неправильное включение может привести к поломке светодиода Работают такие маленькие точки освещения по принципу протекания через них тока только в прямом направлении. От этого возникает оптическое излучение лампочки. Если полярности не соблюсти при подключении, ток не сможет проложить себе прямой путь по цепи. Соответственно, прибор освещения не заработает.

Таким образом, перед установкой светодиода мастер должен узнать расположение его катода и анода («+» и «—»). Сделать это не сложно, зная определенные принципы визуальной оценки лампочки или работы электроприборов в сочетании с ЛЕД-элементом.

Как определить анод и катод

Электролиз

Что это такое катод и анод, выясняют в частных моментах: при определении выводов у полупроводниковых элементов или при идентификации электродов в электрохимических процессах.

Полупроводниковый диод требует позиционного размещения в электросхемах. Для правильного соединения необходимо отождествить выводы. Это можно сделать по следующим признакам:

  • маркировка, нанесённая на корпус элемента;
  • длина выводов детали;
  • показания тестера при измерениях в режиме омметра или проверки диодов;
  • использование источника тока с известной полярностью.

Маркировка полупроводников такого типа может быть выполнена при помощи нанесения на корпус графического обозначения диода. Тогда минус (К) – это вывод со стороны вертикальной линии, в которую упирается контур стрелки. Ножка диода, от которой выходит стрелка, – это плюс (А). Так графически указано прямое направление тока – от «А» к «К».

Другим способом обозначения анода у диодного элемента могут быть нанесённые на корпус одна или две цветные точки или пара узких колец. Существуют конструктивно выполненные диоды, у которых минусовой (катодный) вывод обозначен широким серебряным кольцом. Диод 2А546А-5 (ДМ) служит таким примером.

Примеры нанесения меток на диоды

Длина ножек светодиодов, ни разу не паянных в платы, также может указывать на полярность выводов. У led-диодов длинная ножка – это положительный электрод, короткая – отрицательный вывод. К тому же форма корпуса (обрез края окружности) может служить ориентиром.

Полярность выводов led-диодов

При определении мультиметром полярности контактных выводов полупроводника подключают его в режиме тестирования диодов. Если на дисплее появились цифры, значит, диод подключён в прямом направлении. При этом красный щуп подсоединён к аноду «+», чёрный – к катоду «-».

Если под рукой нет тестера, определить названия выводов диода можно, собрав последовательную цепь из батарейки, лампочки и диода. При прямом включении лампочка загорится, значит, плюс батарейки – на аноде и аналогично минус – на другом электроде.

Информация. Электроды светодиода можно идентифицировать с помощью постоянного ИП с заведомо известной полярностью и включенного последовательно резистора, ограничивающего ток. Свечение элемента укажет на прямое включение. Для этой цели можно взять батарейку RG2032 на 3 вольта и резистор сопротивлением 1кОм.

Включение светодиода через ограничивающий резистор

Что касается полупроводников, всегда существует строгое соответствие наименований. В других случаях правильное определение проходящих электрохимических реакций поможет чётко ориентироваться в отождествлении электродов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector