Как подключить трехфазный двигатель к однофазной сети

Проверка работоспособности

Как проверить работоспособность двигателя путем визуального осмотра?

Ниже перечислены дефекты, которые сигнализируют о возможных проблемах с двигателем, их причиной могла стать неправильная эксплуатация или перегрузка:

  1. Сломанная опора или монтажные щели.
  2. В середине мотора потемнела краска (указывает на перегревание).
  3. Через щели в корпусе внутрь устройства втянуты сторонние вещества.

Чтобы проверить работоспособность двигателя, следует включить его сначала на 1 минуту, а затем дать поработать около 15 минут.

Если после этого двигатель окажется горячим, то:

  1. Возможно, подшипники загрязнились, зажались или просто износились.
  2. Причина может быть в слишком высокой емкости конденсатора.

Отключите конденсатор, и запустите мотор вручную: если он перестанет нагреваться – необходимо уменьшить конденсаторную емкость.

Подключение трехфазных электродвигателей

Часто возникает необходимость в подсоединении асинхронного двигателя,предназначенного для подключения к трехфазной сети в однофазную. Схема подключения трехфазного мотора не сильно отличается от подсоединения однофазного.

Подключение к однофазной сети 220 вольт

Основное отличие состоит в конструкции самого двигателя. В нем имеются равнозначные обмотки, которые соединяются звездой или треугольником. Все зависит от рабочего напряжения.

Схема подключения трехфазного двигателя к однофазной сети включает в себя магнитный пускатель, кнопку включения — выключения и конденсатор. Емкость конденсатора рассчитывается по формуле.

Эта формула справедлива для соединения звездой. И позволяет подобрать рабочий конденсатор.

Вторая формула позволяет рассчитать номинальную емкость для работы с электродвигателем при соединении обмоток треугольником.

Номинал конденсатора можно рассчитать по упрощенной формуле:

Часто при запуске по такой схеме используют пусковой конденсатор, который включают параллельно с рабочим. И выбирается из условий:

Если необходимого номинала нет, то подбор конденсаторов возможен из имеющихся комплектующих при соединении их параллельно или последовательно.

При параллельном соединении емкость суммируется, т. е. увеличивается. А при последовательном соединении уменьшается. И будет меньше меньшего номинала. При подборе конденсаторов необходимо учитывать рабочее напряжение, которое должно быть выше сетевого в 1,5 раза.

При монтаже следует иметь в виду, что схема подключения 3х фазного двигателя предполагает включение конденсатора к третьей обмотке, что позволяет использовать моторы в однофазной сети 220 вольт.

Для того чтобы использовать механизм на полную мощность, следует подключить его к трехфазной сети.

Подключение к трехфазной сети

Для подключения 3 х фазного двигателя на напряжение 380 вольт схема представляет собой соединение обмоток звездой. Соединение треугольником применяется при наличии трехфазной сети на 220 вольт.

Схема подключения асинхронного двигателя к трехфазной сети имеет пускатель на три фазы, кнопку «пуск – стоп» и двигатель. Но в быту имеется однофазное подключение к гаражу или мастерской. Поэтому и возникает необходимость подключения 3х фазного двигателя через конденсаторы к сети 220 вольт, когда используется схема с применением фазосдвигающей цепочки.

Для сдвига фазы применяют конденсатор, который подключают к одной из фаз, а две другие подключают к электрической сети. Это стандартная схема подключения асинхронного двигателя, применяемая для подключения к однофазной сети. При изготовлении всевозможных станков возникает необходимость в реверсивном включении механизмов.

Реверсивная схема подключения при включении трехфазного двигателя к однофазной сети производится по следующей методике.

Достаточно переключить сетевой провод с одного контакта конденсатора на другой. В результате вал начнет вращаться в обратную сторону.

Сложнее осуществляется схема реверсивного подключения двигателя на 380 вольт, если имеется трехфазное соединение.

Для этого применяется принципиальная схема подключения электродвигателя с применением двух магнитных пускателей. С помощью одного из них производится переключение фаз на обмотках.

Второй имеет стандартное включение. При монтаже необходимо предусмотреть защиту от одновременного включения пускателей. В противном случае произойдет короткое замыкание.

Преимущества схемы тиристорного преобразователя: автор В Соломыков

Эта разработка позволяет максимально эффективно сохранить мощность асинхронного двигателя при его подключении в однофазную сеть. Она является прообразом современных частотных преобразователей, но выполнена на старой и доступной элементной базе.

Тиристорный преобразователь позволяет сделать формы напряжений на каждой фазе очень похожими на идеальные, гармоничные синусоиды, под которые и создается асинхронный электродвигатель.

Питание от сети 220 вольт происходит через защиту — автоматический выключатель SF1 и диодный мост на базе Д233В.

Силовые выходные цепи образуются работой тиристорных ключей VS1-VS6.

Сдвиг фаз токов для питания каждой обмотки двигателя своим напряжением создается работой двух микросхем:

  1. DD1 — К176ЛЕ5;
  2. DD2 — К176 ИР2.

Они формируют такты сдвига напряжений сигналов в регистрах, а их сочетания подаются на входы управления тиристорами VS1÷VS6 через индивидуальные транзисторы VT1÷VT6 по запланированной временной диаграмме.

Логическая часть

Микросхема К176ИР2 вырабатывает по 2 раздельных 4-х разрядных регистра сдвига с четырьмя выходами Q от любого триггера. Каждый триггер двухступенчатый, типа D.

Ввод данных в регистр происходит через вход D. Также имеется вход для тактовых импульсов типа C. Они поступают через вход D 1-го триггера, а затем смещаются по ходу вправо на один такт.

Обнуление данных на выходе регистра Q происходит при поступлении на вход R (асинхронный сброс) напряжения логического уровня.

Таблица данных К176ИР2 и состояний регистров

Число разрядов 4х2 Входы Выход
Сторона сдвига Направо C D R Q0 Qn
Тип ввода Последовательно H Н H Qn-1
Тип вывода Параллельно B H B Qn-1
Тактовая частота 2,5MHz X H Q1 Qn не меняется
Рабочая температура -45÷+85 X X B H H

Работой микросхемы К176ИР2 управляет элементы DD1 на сборке К176ЛЕ5.

Они обеспечивают подачу импульсов на управляющие электроды тиристоров по следующей временной диаграмме.

Силовая часть схемы, принципы ее управления и наладки

При подаче напряжения на схему обнуляется регистр сдвига микросхемы DD2 до окончания заряда емкости C2 по цепочке через R5. В момент заряда срабатывает логический элемент DD1.1, разрешающий сдвиг импульса регистру DD2.

При переходе регистра в положение «логической 1» подается сигнал на базу его биполярного транзистора (VT1÷VT6). Последний открывается и подает команду на управляющий электрод своего тиристора.

В результате работы этой цепочки между выходными силовыми клеммами создается трехфазное напряжение (довольно близкое к синусоидальной форме) со сдвигом векторов между собой на 120 градусов.

Асинхронный двигатель, работающий по этой схеме, развивает наибольшую мощность по сравнению с тремя предыдущими вариантами.

Частота коммутации тиристоров подбирается экспериментально при наладке за счет выбора номиналов емкостей С4, С5, С6. Их номиналы зависят от мощности электродвигателя.

Емкость конденсаторов предварительно рассчитывают по формуле:

При номинальной частоте вращения ротора выставляют n=1.

Резисторы R3 и R4 после окончания настройки устройства демонтируют, а вместо R4 запаивают конденсатор с емкостью 0,68 микрофарад.

Затем к точкам A и B припаивают регулировочный резистор на 15 килоом. Его назначение — точное выставление частоты вращения ротора у двигателя.

Все четыре схемы, которые я привел, не содержат дефицитных деталей и могут быть собраны в домашних условиях людьми с начальным уровнем навыков электрика.

Для продвинутых мастеров могу порекомендовать схему, по которой выполнил подключение трехфазного двигателя к однофазной сети без конденсаторов на современной электронной базе владелец сайта Радиокот.

Он фактически собрал частотный преобразователь, которому отдал много времени. К тому же простым паяльником и обычным цифровым мультиметром там отделаться не получится. Нужны практические навыки, специальный инструмент, осциллограф для наладки.

Все это я написал, чтобы подвести вас к выводу: запустить асинхронный двигатель на 3 фазы в сеть 220 вольт без потерь мощности можно только через промышленный частотный преобразователь.

Рекомендую посмотреть два коротких видеоролика по этой теме и сравнить результат.

Видео владельца Kick Ass с самодельным регулятором по схеме В Голик.

Видео владельца Capricorn WorkShop о самом простом частотном преобразователе.

Выводы сделайте сами. А если остались еще вопросы и неясности, или заметили случайную ошибку, то воспользуйтесь разделом комментариев. Обязательно обсудим.

Подбираем конденсатор

В цепи переменного тока — а это как раз наш случай — не стоит пользоваться полярными, имеющими плюсовой и минусовой контакты (анод и катод) конденсаторами. Но при необходимости эту проблему обойти можно путём использования диодного моста или двух полярных конденсаторов, объединённых в один соединением одноимённых контактов, но тут опять лучше позвать опытного электрика.

Существует формула потребной ёмкости рабочего конденсатора, но рассчитав по ней, равно потребуется проверять работу устройства на практике. Если есть какие-то конденсаторы лучше сразу перейти к методу вдумчивого подбора, но именно вдумчивого, а не совсем бездумного. Конденсаторы должны быть неполярными, обладать одинаковым рабочим напряжением никак не менее 300 В, но лучше 400 В и выше.

Рабочее напряжение конденсаторов должно быть ОДИНАКОВЫМ, иначе тот, где оно меньше, выйдет из строя.

Начните со значения 30 микрофарад (μF) на 1 киловатт паспортной мощности мотора при соединении обмоток статора звездой, при треугольнике можно пробовать с 50−70 μF. Электродвигатель на холостом ходу (без нагрузки) должен запуститься и набрать обороты не особо нагреваясь, продолжительная работа на холостом ходу нежелательна, двигатель может сгореть. Если холостой запуск происходит нормально, без перегрева и запаха гари, то рабочий конденсатор подобран, на нём и будет работать, подключайте нагрузку и продолжайте испытания уже в рабочем состоянии.

А если подключение электродвигателя 380 В на 220 В через конденсатор происходит сразу под серьёзной нагрузкой? Тут потребуется стартовый конденсатор, его ёмкость нужно начинать подбирать со значений в полтора раза больше, чем рабочий. Пример: рабочий 60 μF, тогда стартовый первоначально ставим на 90 μFи, если нормального запуска нет, то добавляем ёмкость пусковой цепи конденсаторов (примерная ёмкость пусковой цепи составляет до трёх рабочей, в нашем примере до 180 μF). После выхода на рабочие обороты пусковые конденсаторы выключаются, остаётся только рабочий. Цепи рабочего и пускового конденсаторов параллельны, в каждую можно поставить отдельный выключатель.

В бытовой сети не нужно использовать устройства мощностью более 3 квт — сработает защита или сгорит проводка.

Какую схему выбрать и какая лучше?

Итак, как соединить обмотки звездой и треугольником мы разобрались, но здесь как раз и начинается «все самые интересные вопросы», причем эти вопросы у людей возникают чаще всего либо при подключении трёхфазного двигателя к однофазной сети, либо при подключении двигателя к частотному преобразователю с однофазным входом и линейными 220В на выходе и в других ситуациях.

Возможность изменения схемы соединения обмоток нужна для того, чтобы один и тот же двигатель мог эксплуатироваться в электросетях с различным напряжением.

Какую схему лучше выбрать? Вопрос не корректный, нужно соединять обмотки в ту схему, номинальное напряжение которой соответствует напряжению в электросети. Эта информация указана на шильдике электродвигателя.

Если на шильдике вашего двигателя указано как на фото выше «Δ/Y 220/380» — это значит что если линейное напряжение в питающей сети 220В – нужно соединять обмотки треугольником, если 380В – звездой. Если вы будете его подключать к однофазной сети 220В с конденсаторами – обмотки также соединяются треугольником.

Если на шильдике указано только одно напряжение и значок схемы (см. рисунок ниже), то возможности изменить схему соединения нет, и в брно, скорее всего, выведено будет 3 провода.

Встречаются и двигатели, которые в сети 380В работают, соединенными по схеме треугольника, схема звезды в этом случае рассчитана на работу в сети 660В, что вы можете наблюдать на следующей фотографии.

Но зачастую такие двигатели используются для пуска с переключением со звезды на треугольник, это делают для понижения пусковых токов.

В этом случае напряжение 380В подаётся сначала на обмотки соединенные по схеме звезды, так как номинальное напряжение для этой схемы 660В двигатель в момент пуска питается от пониженного напряжения и к каждой из обмоток прикладывается всего по 220В.

Когда обороты двигателя возрастают, происходит переключение на треугольник. И уже к каждой обмотке прикладываются их номинальные 380В.

Схема подключения электродвигателя с переходом со звезды на треугольник при пуске

Что будет если перепутать звезду и треугольник?

Чтобы ответить на этот вопрос вспомним формулы мощности трёхфазной нагрузки:

Для упрощения представим, что у нас есть сеть с каким-то определенным напряжением, пусть это будет 220/380 вольт, а также есть 3 лампы накаливания с номинальным напряжением 220В. И еще раз посмотрим на рисунок с распределением напряжений и токов в звезде и треугольнике.

Так как линейное напряжение у нас 380В, а в «звезде» фазное в 1.73 раза ниже линейного, то делаем вывод, что для работы в номинальном режиме нужно подключить эти лампочки звездой, тогда к каждой из них будет приложено 220В.

Теперь соединим их в треугольник, и что получится? Первое что бросается в глаза – к каждой лампе приложено уже 380В вместо 220В номинальных.

Несложно догадаться, что в этом случае наши лампочки просто сгорят, то же самое произойдет и с обмоткой двигателя.

Что при этом происходит с мощностью?

Если питающее напряжение и нагрузка неизменны, то при переключении со звезды на треугольник мощность, выделяемая на этой самой нагрузке, возрастёт в 3 раза. Это происходит потому, что напряжение на каждой лампе увеличилось в 1.73 раза, за ним настолько же вырос и ток.

Формулы для вычисления мощности в обоих случаях одинаковые, но цифры в них различаются, давайте проведем 1 расчет для примера.

Допустим, ток нагрузки в схеме звезды у нас был 1А, тогда полная мощность в звезде равна:

При этом мощность одной лампы в этом случае равна 220 ВА.

В треугольнике к каждой лампе приложено напряжение в 1.73 раза выше – 380В, соответственно и ток через лампу (фазный ток)

возрастет на столько же. При этом не забывайте, чтолинейный ток в звезде и так будет в 1.73 раза больше, чем фазный. Найдем полную мощность по трём фазам:

S=√3*Uл*Iл=1.73*380В*(1.73А*1.73) = 1.73*380В*3А=1972 ВА

А на одной лампе выделится мощность равная:

Но это не значит, что при соединении по схеме треугольника двигатель будет выдавать в 3 раза большую мощность, при питании от номинального для этой схемы напряжения двигатель будет выдавать свою номинальную мощность.

Источник

Стандартное подключение

Все трехфазные асинхронные двигатели подсоединяют в сеть на 380 В. При этом они выдают максимальную мощность и наибольшие обороты. Но не у каждого хозяина есть возможность провести к себе на участок все три фазы. Это связано с финансовыми затратами по установке специальных счётчиков и различных щитов учёта электроэнергии. К тому же само оформление документов занимает довольно много времени.

По стандартной схеме, чтобы подключить трехфазный двигатель к 380 В, производят соединение трёх фаз со штатными клеммами мотора через пускатели, с помощью которых осуществляется запуск. В распределительной коробке двигателя обычно свободны три контакта, к которым и цепляют три фазы. Совершенно нет никакой разницы, какую фазу подсоединить к конкретному проводу. Правда, есть один нюанс – при смене проводов подключения, не трогая третий провод, получают вращение электродвигателя в другую сторону, что иногда необходимо в хозяйственной деятельности.

Соединение обмоток

Схемы соединения обмоток в двигателе только две – «звезда» или «треугольник». И оттого, как они соединены, зависят рабочие характеристики мотора. При любом соединении мощность не теряется. Зато при чрезмерной нагрузке двигатели со «звездой» медленнее скидывают свои обороты, чем их собратья с «треугольником». Отсюда делают вывод, что моторы со «звездой» требуют меньше пускового тока и, следовательно, менее нагружают электросеть при запуске.

Двигатели с соединением обмоток по «треугольнику» выдают свою мощность до конца даже при большой нагрузке, совершенно не теряя оборотов. Зато потом резко останавливаются, и для их следующего запуска требуется огромный пусковой ток, что чрезмерно перегружает электрическую сеть.

В промышленности используют обе схемы соединения. Двигатели со «звездой» применяют там, где требуется их систематическое включение и выключение, например, на каких-либо линиях производства, переработки, сборки и так далее. Моторы, у которых обмотки соединены по «треугольнику», нужны для работы на постоянных режимах нагрузки, например, выгрузной конвейер из шахты и другое.

В личных подсобных хозяйствах чаще всего используют двигатели, у которых соединение обмоток сделано по принципу «звезда». По такой схеме двигатели легко запускаются, а это не нагружает электрическую сеть частного дома.

Схема подключения магнитного пускателя от контроллера

Последние 10 лет в новой промышленной автоматике широко применяются контроллеры. Катушки пускателей также включаются с выходов контроллера. И в данном случае для защиты от КЗ и теплового перегрева используется схема подключения двигателя номер 8:

8. Схема подключения пускателя с управлением от контроллера. ПРАКТИЧЕСКАЯ СХЕМА

На схеме QF – это мотор-автомат, или автомат защиты двигателя, как в схеме 4. Только изобразил я его по современному. В данном схема подключения пускателя “спрятана” в пунктире. Там находится контроллер, который всем управляет, и включает двигатель согласно программе, заложенной в нём.

При перегрузке двигателя мотор-автомат его отключает, и размыкает свой дополнительный (четвертый, сигнальный) контакт. Это необходимо только для того, чтобы “проинформировать” контроллер о аварии. Часто этот контакт просто-напросто входит в контрольную цепь, и останавливает весь станок.

2 вариант

Схема идентична конденсаторному мотору, но без выключателя. Пусковой момент составляет только 20–30% от полной нагрузки крутящего момента.

Применение этого типа однофазных двигателей, как правило, ограничивается прямым приводом таких нагрузок, как вентиляторы, воздуходувки или насосы, которые не требуют высокого пускового крутящего момента. Возможны различные модификации схем с предварительным расчетом необходимой емкости конденсатора для подсоединения к двигателю 220 В.

Стоит отметить, что обеспечение лучших характеристик нужно при изменении нагрузки мотора. Увеличение емкости ведёт к уменьшению сопротивления в цепи переменного тока. Правда замена емкости электролита несколько усложняет схему.

Выбираем автоматический выключатель и пусковое устройство.

Прежде чем заняться подключением двигателя, давайте подберем пускорегулирующую аппаратуру. Современная промышленность выпускает огромное количество автоматов для защиты электродвигателя. Купив такой прибор, можно сразу отбросить вопросы по дальнейшему выбору.

Это интересно — «Способы крепления светильников».

Единственное, что придется сделать — рассчитать аппарат по номинальному току. Вычисляется по формуле: для трехфазной сети —  I  = Р/ Un*1 .73*n*cosф, и для однофазной — I  = Р/ Un*cosф, где Р – мощность электромотора, Un – рабочее напряжение, n – его КПД (как правило, есть в паспорте на изделие, обычно 0,85), а cosф – коэффициент мощности (можно найти в паспорте, для электромоторов, обычно, он равен 0,85). Далее получив результат, умножаем его на температурный коэффициент (это примерно 1,2). Из этого следует, что если, к примеру, мы имеем двигатель 1кВт – то его номинальный ток получится 2,1А  для 380в и 6,3А для 220в. Подбираем автоматические выключатели (АВ) с ближайшими параметрами на увеличение. Хорошо зарекомендовали себя автоматы защиты двигателя с встроенным тепловым реле производства Moeller, ABB, Schneider Electric. Но есть одно «НО», они достаточно дорогие.

Поэтому, исходя из финансовых вопросов, берем обычный модульный АВ с характеристикой «С». Однако, к нему еще необходимо тепловое реле (теплушка). Самым оптимальным вариантом будет выбор ПМЛ-1220. И наконец, давайте сами соберем это устройство, тем более, что в нем нет ничего сложного. Нам понадобится: кроме АВ, модульный или просто контактор с 4 нормально-разомкнутыми контактами. Теплушка и две кнопки без фиксации (по одной с нормально-разомкнутыми нормально-замкнутым контактами). Дальше делаем как представлено ниже.

Подключение трехфазного двигателя к однофазной сети по схеме звезды

Начну с предупреждения: даже опытные электрики во время работы допускают ошибки, которые называются «человеческий фактор». Что уж говорить про домашних мастеров…

Поэтому рекомендую в обязательном порядке подачу напряжения на собранную схему выполнять только через отдельный автоматический выключатель SF, правильно подобранный по нагрузке. Он спасет жизнь и здоровье.

Схема подключения звезды показана на картинке.

Концы обмоток собраны в одну точку горизонтальными перемычками внутри клеммной коробки. На нее никакие внешние провода не подключены.

Фаза (через автоматический выключатель) и ноль бытовой проводки подаются на две разные клеммы начал обмоток. К свободной клемме (на рисунке Н2) подключена параллельная цепочка из двух конденсаторов: Cp — рабочий, Сп — пусковой.

Рабочий конденсатор соединен второй обкладкой жестко с фазным проводом, а пусковой — через дополнительный выключатель SA.

При запуске электродвигателя ротор необходимо раскрутить из состояния покоя. Он преодолевает усилия трения подшипников, противодействия среды. На этот период требуется повысить величину магнитного потока статора.

Делается это за счет увеличения тока через дополнительную цепочку пускового конденсатора. После выхода ротора на рабочий режим его нужно отключить. Иначе пусковой ток перегреет обмотку двигателя.

Выполнять отключение цепочки пуска простым переключателем не всегда удобно. Для автоматизации этого процесса используют схемы с реле или пускателями, работающими по времени.

Среди мастеров самодельщиков пользуется популярностью кнопка пуска от советских стиральных машин активаторного типа. У нее встроено два контакта, один из которых после включения отключается автоматически с задержкой: то, что надо в нашем случае.

Если приглядитесь внимательно на принцип подачи однофазного напряжения, то увидите, что 220 вольт приложены к двум последовательно подключенным обмоткам. Их общее электрическое сопротивление складывается, ослабляя величину протекающего тока.

Подключение трехфазного двигателя к однофазной сети по схеме звезды используется для маломощных устройств, отличается повышенными потерями энергии до 50% от трехфазной системы питания.

Изготовление

Сначала проводится равномерная намотка проволочки. Её аккуратно накручивают на катушку. Чтобы облегчить процесс, можно воспользоваться основой, взяв, к примеру, аккумуляторную батарейку. Плотность намотки не должна быть большой, но и лёгкая тоже не нужна.

На следующем этапе изготавливают частотник для электродвигателя своими руками. Делается конструкция просто. В 5 пластинах электродрелью просверливается отверстие, потом следует их надеть на велосипедную спицу, которая берётся в качестве оси. Пластины прижимаются, при этом их фиксация проводится с помощью изоленты, излишек обрезается с помощью ножа канцелярского.

Когда через катушку проходит электрический ток, частотником создаётся возле себя магнитное поле, исчезающее после отключения электротока. Воспользовавшись этим свойством, следует проводить притягивание и отпускание деталей из металла, при этом проводят включение и отключение электротока.

Выбор схемы подключения

Обмотки одного и того же двигателя можно соединить либо звездой, либо треугольником. Выбирать схему соединения нужно по нагрузке. Если трехфазный мотор в однофазной сети будет приводить в движение какой-либо маломощный механизм, то можно выбрать схему соединения «звезда». При этом рабочий ток будет невелик, но габариты и цена конденсаторной батареи значительно снизятся.

В случае большой нагрузки при работе или в момент пуска, обмотки двигателя обязательно должны быть включены по схеме «треугольник». Это обеспечит достаточный ток для длительной работы. К недостаткам следует отнести значительную цену и габариты конденсаторов.

Как подключить пусковой и рабочий конденсаторы

На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.

Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.

Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.

https://youtube.com/watch?v=W-NnJKC-RtM

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector