Теплосопротивление стен по регионам

Тепловое сопротивление окон

В воздухе частицы, которые участвуют в теплообмене, находятся на значительном расстоянии друг от друга, а следовательно, изолированный в герметичном пространстве воздух является лучшим утеплителем. Поэтому все деревянные окна раньше делались с двумя рядами створок. Благодаря воздушной прослойке между рамами сопротивление теплопередаче окон повышается. Этот же принцип применяется для входных дверей в частном доме. Для создания подобной воздушной прослойки ставят две двери на некотором расстоянии друг от друга или делают предбанник.

Такой принцип остался и в современных пластиковых окнах. Единственное отличие – высокое сопротивление теплопередачи стеклопакетов достигается не за счет воздушной прослойки, а за счет герметичных стеклянных камер, из которых откачан воздух. В таких камерах воздух разряжен и практически нет частиц, а значит, и передавать температуру нечему. Поэтому теплоизоляционные свойства современных стеклопакетов намного выше, чем у старых деревянных окон. Тепловое сопротивление такого стеклопакета – 0,4 (м2*°C)/Вт.

Современные входные двери для частных домов имеют многослойную структуру с одним или несколькими слоями утеплителей. К тому же дополнительное теплосопротивление дает установка резиновых или силиконовых уплотнителей. Благодаря этому дверь становится практически герметичной и установка второй не требуется.

Модули с базовой платой

Величина теплового сопротивления Rth(j–с), как и прежде, нормируется для одного ключа, рассеиваемая мощность измеряется на силовых терминалах. Для модулей с несколькими одинаковыми ключами (например, полумостовой IGBT) в спецификации указываются параметры ключа с самым высоким значением Rth(j–с), эта величина рассматривается как максимальная на основе большего числа измерений.

Ранее сопротивление модуля Rth(j–s)M определялось по методу 1 (измерение температуры рядом с модулем) для наихудшего случая, соответствующего очень асимметричному распределению рассеиваемой мощности между ключами.

Начиная с 2015 г. тепловое сопротивление определяется по методу 2 (измерение температуры под модулем) для одиночного ключа Rth(с–s)Х и дополнительно для модуля Rth(с–s)М. Эта величина учитывает влияние тепловой связи между ключами при типовом распределении рассеиваемой мощности. Для упрощения сопоставления параметров с модулями других производителей также дается теоретическое значение.

Новая методика описания тепловых свойств модулей имеет три основных преимущества:

  • При измерении Тs в отверстии под модулем снижается зависимость от условий охлаждения, конструкции радиатора и его материала.
  • SEMIKRON использует одинаковую контрольную точку Ts для «базовых» и «безбазовых» модулей, что облегчает сравнение различных типов силовых ключей.
  • Использование контрольной точки Ts под модулем является самым распространенным способом нормирования величины Rth(с–s) для большинства выпускаемых в мире модулей. Это облегчает сравнение компонентов, выпускаемых разными производителями. Кроме того, параметр Rth(c–s)M учитывает полную тепловую связь между ключами внутри модуля.
  • Нормирование величины Rth(с–s) для IGBT- и FWD-ключа, а также для модуля позволяет выбирать наиболее подходящую модель теплового сопротивления для различных условий эксплуатации.

Это дает возможность адаптировать характеристики радиатора с учетом контрольной точки измерения температуры Ts. Для модулей, тепловые параметры которых определяются по новой методике (в спецификации Rth(c–s) в графе «условия измерений» это отмечается фразой «Ts from underneath»), сопротивление радиатора Rth(s–a) также должно нормироваться по контрольной точке Ts2 (см. раздел «Определение теплового сопротивления»).

Производители и виды

Однако современные материалы благодаря новейшим технологиям могут обладать разной плотностью при том, что изготовлены совершенно из одинакового сырья.

Волокнистое сырье

Базальтовая вата имеет в среднем показатель в 50-200 кг/м3 – диапазон широкий. Максимальное значение принадлежит вариантам, предназначенным для перекрытий и крыш.

Так, базальтовые плиты ТехноНиколь Галатель имеют удельный вес в 195 кг/м3. Базальтовая вата Дахрок от «Роквулл» в 190 кг/м3 – ее предназначение в утеплении под рулонным кровельным покрытием. Базальтовое волокно Knauf Insulation HTB с невысокой плотностью в 35 кг/м3 предназначено для каркасных конструкций и быстровозводимых строений. Минеральная вата ТехноНиколь Роклайт в 30-40 кг/м3 – это вариант облегченной изоляции, а та же компания Кнауфф производит Кнауфф НТВ в вариации плотности в 150 кг/м3.

Пено-материалы

Плотность пенопласта составляет порядка 100-150 кг/м3 — наиболее плотные плиты нужны для отделки кровли или перекрытий. Производители четко разделяют пенопластовые плиты по сфере применения, когда и удельный вес соответственно меняется. Экструдированный пенополистирол в 28-35 кг/м3 является одним из самых легких материалов и самых теплоизолирующих.

Например, ТехноНиколь Карбон Санд с показателем в 28 кг/м3 – он применяется для сэндвич-панелей, а ТехноНиколь Карбон Проф с показателем в 30-35 кг/м3 применим для изоляции стен и нагружаемых конструкций. Плиты того же производителя с плотностью в 50-60 кг/м3 используются для дорожного строительства. Пеноплекс Стена имеет дифференцированную плотность: 25 кг/м3 – для изоляции вертикальных конструкций, 47 кг/м3 – для стройки дорог.

Модули без базовой платы

Положение датчика температуры радиатора, размещаемого в отверстии под кристаллами, не меняется. До начала измерения теплового сопротивления модуль подвергается воздействию трех термоциклов, что гарантирует хорошее распределение термопасты. Величина прямого падения напряжения, необходимая для расчета рассеиваемой мощности, измеряется как можно ближе к чипам у силовых выводов.

Сопротивление Rth(j–с) приводится для одиночного цикла коммутации.

Ранее измерялись параметры всех ключей в небольшом количестве модулей; наибольшее полученное значение использовалось в качестве типового с добавлением некоторого запаса.

Начиная с 2015 г. измеряются параметры всех ключей; определяется ключ с наибольшим значением Rth(j–с), его параметры анализируются в большом количестве модулей. Средняя величина Rth(j–s) для данного «наихудшего случая» приводится в качестве типовой в технической спецификации.

Строительные блоки

Высокое сопротивление теплопередаче всех строительных блоков достигается за счет наличия в их структуре воздушных камер или вспененной структуры. Так, например, некоторые керамические и другие виды блоков имеют специальные отверстия, которые при кладке стены идут параллельно ей. Таким образом, создаются закрытые камеры с воздухом, что является довольно эффективной мерой препятствия теплопередачи.

В других строительных блоках высокое сопротивление теплопередачи заключается в пористой структуре. Это может достигаться различными методами. В пенобетонных газобетонных блоках пористая структура образуется благодаря химической реакции. Другой способ – это добавление в цементную смесь пористого материала. Он применяется при изготовлении полистиролбетонных и керамзитобетонных блоков.

Основные варианты утепления

  • Пенополистирол (ППС) – плитный материал, производится путем вспенивания полистирола. Фактически строительный ППС представляет собой «белый» пенопласт.
  • Экструдированный пенополистирол (ЭППС) тоже изготавливается на основе пенополистирола методом выдавливания через экструдер. Ячеистая структура получается плотнее, за счет этого ЭППС меньше впитывает влагу и обладает меньшей теплопроводностью, чем ППС.

По старому ГОСТу пенополистирол обозначался сокращением ПСБ (пенополистирол беспрессовый). По новым стандартам принято наименование ППС. Изменения коснулись и обозначения плотности, которая обычно указывалась в виде цифры после наименования: ПСБ-15, ПСБ-25 или ППС–15, ППС-25. Отличие в том, что у ППС указывается минимальная, а у ПСБ максимальная плотность, то есть ПСБ-25 имеет разброс по значениям от 15 до 25 кг/м.куб., у ППС-25 плотность не менее 25 кг/м.куб.

Пенополиуретан (ППУ) – в большинстве случаев используется в виде напыляемого утеплителя. ППУ утеплитель действуют по схожему механизму с монтажной пеной – полимер выходит из баллона, затем под действием воздуха и влаги начинает расширяться.

Напыляемые утеплители позволяют создавать бесшовный теплоизолирующий слой. Отсутствие швов исключает теплопотери через стыки, но при этом все равно сохраняются стыки с другими материалами в конструкции (стыки со стропилами).

  • Эковата – напыляемый утеплитель на основе целлюлозы, основным сырьем для этого материала служит распушенная макулатура. Она хорошо сочетается с деревянными конструкциями из-за низкой горючести. Для нанесения требуется компрессор, что повышает затраты на выполнение работ.
  • Каменная (базальтовая) вата – плитный утеплитель, который изготавливают из расплавленных горных пород. Структурно материал состоит из тончайших нитей, воздух между волокнами служит основным теплоизолятором.
  • Стекловата – по способу изготовления и структуре этот утеплитель схож с каменной ватой, только в качестве сырья используется не базальт, а расплавленное стекло (кварц). Основным сырьем для стекловаты служит стеклянный бой.
  • PIR (пенополиизоцианурат) – плитный полимерный утеплитель, по химическому составу близкий к ППУ. Материал имеет структуру из закрытых ячеек, снаружи поверхности обклеивают фольгой (PIR Ф/Ф), крафтом (PIR КБ/КБ) или стеклохолстом (PIR СХМ/СХМ). Для сравнения с другими утеплителями возьмем наиболее распространенную разновидность с фольгой.

Теперь рассмотрим каждый параметр, в конце мы сведем все данные в единую таблицу.

Возможно, вам также будет интересно

Обычно силовой транзистор в преобразовательных устройствах представляется сопротивлением конечной величины во включенном состоянии и бесконечным — в выключенном. Такая простейшая модель транзисторного ключа позволяет рассчитывать процессы в преобразовательных устройствах, если длительность коммутационных процессов много меньше длительности включенного и выключенного состояния ключа. В противном случае, а также для расчета режимов работы силового транзистора необходимы более точные

Матричный преобразователь частоты (МПЧ) — сравнительно новый элемент преобразовательной техники, освоение которого возможно на основе опыта применения наиболее близких аналогов — непосредственных преобразователей частоты (НПЧ) и автономных инверторов напряжения (АИН). Сочетание многих положительных свойств в матричных структурах достигается применением запираемых вентильных ячеек с двусторонней проводимостью тока. Каждая из ячеек чаще всего выполняется в виде бивентиля

Приведена классификация современных однофазных корректоров коэффициента мощности (ККМ-бустеров) применительно к источникам питания переменного тока. Дается анализ структур ККМ и их энергетических характеристик.

Последовательность действий

Первым делом, нужно выбрать строительные материалы, которые будете использовать для постройки дома. После этого рассчитываем термическое сопротивление стены по описанной выше схеме. Полученные величины следует сравнивать с данными таблиц. Если они совпадают или оказываются выше, хорошо.

Если величина ниже, чем в таблице, тогда нужно увеличить толщину утеплителя или стены, и снова выполнить подсчет. Если в конструкции присутствует воздушная прослойка, которая вентилируется наружным воздухом, тогда в учет не следует брать слои, находящиеся между воздушной камерой и улицей.

Приложение А (обязательное)

Таблица А.1

Материалы (конструкции)

Эксплуатационная влажность материалов w, % по массе, при условиях эксплуатации

А

Б

1 Пенополистирол

2

10

2 Пенополистирол экструзионный

2

3

3 Пенополиуретан

2

5

4 Плиты из резольно-фенолформальдегидного пенопласта

5

20

5 Перлитопластбетон

2

3

6 Теплоизоляционные изделия из вспененного синтетического каучука «Аэрофлекс»

5

15

7 Теплоизоляционные изделия из вспененного синтетического каучука «Кфлекс»

8 Маты и плиты из минеральной ваты (на основе каменного волокна и штапельного стекловолокна)

2

5

9 Пеностекло или газостекло

1

2

10 Плиты древесно-волокнистые и древесно-стружечные

10

12

11 Плиты фибролитовые и арболит на портландцементе

10

15

12 Плиты камышитовые

10

15

13 Плиты торфяные теплоизоляционные

15

20

14 Пакля

7

12

15 Плиты на основе гипса

4

6

16 Листы гипсовые обшивочные (сухая штукатурка)

4

6

17 Изделия из вспученного перлита на битумном связующем

1

2

18 Гравий керамзитовый

2

3

19 Гравий шунгизитовый

2

4

20 Щебень из доменного шлака

2

3

21 Щебень шлакопемзовый и аглопоритовый

2

3

22 Щебень и песок из вспученного перлита

5

10

23 Вермикулит вспученный

1

3

24 Песок для строительных работ

1

2

25 Цементно-шлаковый раствор

2

4

26 Цементно-перлитовый раствор

7

12

27 Гипсоперлитовый раствор

10

15

28 Поризованный гипсоперлитовый раствор

6

10

29 Туфобетон

7

10

30 Пемзобетон

4

6

31 Бетон на вулканическом шлаке

7

10

32 Керамзитобетон на керамзитовом песке и керамзитопенобетон

5

10

33 Керамзитобетон на кварцевом песке с поризацией

4

8

34 Керамзитобетон на перлитовом песке

9

13

35 Шунгизитобетон

4

7

36 Перлитобетон

10

15

37 Шлакопемзобетон (термозитобетон)

5

8

38 Шлакопемзопено- и шлакопемзогазобетон

8

11

39 Бетон на доменных гранулированных шлаках

5

8

40 Аглопоритобетон и бетон на топливных (котельных) шлаках

5

8

41 Бетон на зольном гравии

5

8

42 Вермикулитобетон

8

13

43 Полистиролбетон

4

8

44 Газо- и пенобетон, газо- и пеносиликат

8

12

45 Газо- и пенозолобетон

15

22

46 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-песчаном растворе

1

2

47 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-шлаковом растворе

1,5

3

48 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-перлитовом растворе

2

4

49 Кирпичная кладка из сплошного кирпича силикатного на цементно-песчаном растворе

2

4

50 Кирпичная кладка из сплошного кирпича трепельного на цементно-песчаном растворе

2

4

51 Кирпичная кладка из сплошного кирпича шлакового на цементно-песчаном растворе

1,5

3

52 Кирпичная кладка из керамического пустотного кирпича плотностью 1400 кг м3 (брутто) на цементно-песчаном растворе

1

2

53 Кирпичная кладка из пустотного кирпича силикатного на цементно-песчаном растворе

2

4

54 Древесина

15

20

55 Фанера клееная

10

13

56 Картон облицовочный

5

10

57 Картон строительный многослойный

6

12

58 Железобетон

2

3

59 Бетон на гравии или щебне из природного камня

2

3

60 Раствор цементно-песчаный

2

4

61 Раствор сложный (песок, известь, цемент)

2

4

62 Раствор известково-песчаный

2

4

63 Гранит, гнейс и базальт

64 Мрамор

65 Известняк

2

3

66 Туф

3

5

67 Листы асбестоцементные плоские

2

3

Ключевые слова: строительные материалы и изделия, теплофизические характеристики, расчетные значения, теплопроводность, паропроницаемость

Эффективность многослойных конструкций

Плотность и теплопроводность

В настоящее время нет такого строительного материала, высокая несущая способность которого сочеталась бы с низкой теплопроводностью. Строительство зданий по принципу многослойных конструкций позволяет:

  • соответствовать расчётным нормам строительства и энергосбережения;
  • оставлять размеры ограждающих конструкций в пределах разумного;
  • уменьшить материальные затраты на строительство объекта и его обслуживание;
  • добиться долговечности и ремонтопригодности (например, при замене одного листа минеральной ваты).

Комбинация конструкционного материала и теплоизоляционного позволяет обеспечить прочность и снизить потерю тепловой энергии до оптимального уровня. Поэтому при проектировании стен при расчётах учитывается каждый слой будущей ограждающей конструкции.

Важно также учитывать плотность при строительстве дома и при его утеплении. Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух. Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух

Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух.

Расчёт толщины стен и утеплителя

Расчёт толщины стены зависит от следующих показателей:

  • плотности;
  • расчётной теплопроводности;
  • коэффициента сопротивления теплопередачи.

Согласно установленных норм, значение показателя сопротивления теплопередачи наружных стен должно быть не менее 3,2λ Вт/м •°С.

Расчёт толщины стен из железобетона и прочих конструкционных материалов представлен в таблице 2. Такие строительные материалы отличаются высокими несущими характеристиками, они долговечны, но в качестве тепловой защиты они неэффективны и требуют нерациональной толщины стены.

Таблица 2

Показатель Бетоны, растворно-бетонные смеси
Железобетон Цементно-песчаный раствор Сложный раствор (цементно-известково-песчаный) Известково-песчаный раствор
плотность, кг/куб.м 2500 1800 1700 1600
коэффициент теплопроводности, Вт/(м•°С) 2,04 0,93 0,87 0,81
толщина стен, м 6,53 2,98 2,78 2,59

Конструкционно-теплоизоляционные материалы способны подвергаться достаточно высоким нагрузкам, при этом значительно повышают теплотехнические и акустические свойства зданий в стеновых ограждающих конструкциях (таблица 3.1, 3.2).

Таблица 3.1

Показатель Конструкционно-теплоизоляционные м-лы
Пемзобетон Керамзитобетон Полистиролбетон Пено- и газобетон (пено- и газосиликат) Кирпич глиняный Силикатный кирпич
плотность, кг/куб.м 800 800 600 400 1800 1800
коэффициент теплопроводности, Вт/(м•°С) 0,68 0,326 0,2 0,11 0,81 0,87
толщина стен, м 2,176 1,04 0,64 0,35 2,59 2,78

Таблица 3.2

Показатель Конструкционно-теплоизоляционные м-лы
Кирпич шлаковый Силикатный кирпич 11-типустотный Кирпич силикатный 14-типустотный Сосна (поперечное расположение волокон) Сосна (продольное расположение волокон) Фанера клеёная
плотность, кг/куб.м 1500 1500 1400 500 500 600
коэффициент теплопроводности, Вт/(м•°С) 0,7 0,81 0,76 0,18 0,35 0,18
толщина стен, м 2,24 2,59 2,43 0,58 1,12 0,58

Значительно повысить теплозащиту зданий и сооружений позволяют теплоизоляционные строительные материалы. Данные таблицы 4 показывают, что наименьшие значения коэффициента теплопроводности имеют полимеры, минераловатные, плиты из природных органических и неорганических материалов.

Таблица 4

Показатель Теплоизоляционные м-лы
ППТ ПТ полистиролбетонные Маты минераловатные Плиты теплоизоляционные (ПТ) из минеральной ваты ДВП (ДСП) Пакля Листы гипсовые (сухая штукатурка)
плотность, кг/куб.м 35 300 1000 190 200 150 1050
коэффициент теплопро- водности, Вт/(м•°С) 0,39 0,1 0,29 0,045 0,07 0,192 1,088
толщина стен, м 0,12 0,32 0,928 0,14 0,224 0,224 1,152

Значения таблиц теплопроводности строительных материалов применяются при расчётах:

  • теплоизоляции фасадов;
  • общестроительной изоляции;
  • изоляционных материалов при устройстве кровли;
  • технической изоляции.

Задача выбора оптимальных материалов для строительства, конечно же, подразумевает более комплексный подход. Однако даже такие простые расчёты уже на первых этапах проектирования позволяют определить наиболее подходящие материалы и их количество.

Тепловое сопротивление кристалл — окружающая среда

14.04.2014 | Рубрика: Параметры ОУ

Параметры операционного усилителя — Тепловое сопротивление кристалл — окружающая среда

Тепловое сопротивление кристалл — окружающая среда (θJA) определяется как отношение разности температур между кристаллом и окружающей прибор средой к рассеиваемой прибором мощности. Измеряется тепловое сопротивление в градусах Цельсия на ватт.

Тепловое сопротивление между кристаллом и окружающей средой складывается из теплового сопротивления между кристаллом и корпусом (θJC) и теплового сопротивления между корпусом и окружающей средой (θCA).

θJA является лучшим показателем для оценки максимально допустимой рассеиваемой мощности, когда корпус ОУ не имеет тепловой связи с другими элементами конструкции.

Значение θJA указывается в справочной документации для различных корпусов ОУ Температуру кристалла ОУ можно рассчитать по формуле

ТА — температура окружающего воздуха;

TJ — температура кристалла;

PD — рассеиваемая прибором мощность;

θJC — тепловое сопротивление кристалл — корпус;

θCH — тепловое сопротивление корпус — радиатор;

θHA — тепловое сопротивление радиатор — окружающий воздух;

θJA — тепловое сопротивление кристалл — окружающий воздух.

Конструирование радиаторов основывается на результатах измерений их теплового сопротивления θHA, выполняемых их изготовителями, и осуществляется по аналогии с электрическими цепями: разность температур при этом эквивалентна разности напряжений, тепловое сопротивление является аналогом электрического сопротивления, а мощность — аналогом тока.

На рисунке приведено сравнение двух радиаторов при двух разных значениях рассеиваемой мощности. Точкой отсчёта является температура окружающего воздуха (0 В для электрического эквивалента). Так как температура внутри корпуса прибора и в разных условиях его работы может изменяться в широких пределах, в качестве ТА используется максимальное ожидаемое значение температуры окружающего воздуха.

Тепловое сопротивление и его электрический эквивалент.

При выполнении тепловых расчётов первый шаг — это определение температуры радиатора. Для этого надо выделяемую прибором мощность умножить на значение теплового сопротивления радиатор — окружающий воздух. Следующий шаг — определение температуры корпуса прибора и так далее.

Как следует из таблицы, различие тепловых сопротивлений радиатор — окружающая среда и корпус — радиатор приводит к большому различию температур кристаллов при одной и той же рассеиваемой мощности: 37 и 158°С

Отсюда следует, что очень важно правильно выбрать радиатор для эффективного охлаждения мощных приборов

Установка вентиляторов значительно увеличивает эффективность радиаторов. По этой причине практически во всех персональных компьютерах радиатор процессора обдувается вентилятором.

Расчет многослойной конструкции

Если стену будем строить из различных материалов, допустим, кирпич, минеральная вата, штукатурка, рассчитывать величины следует для каждого отдельного материала. Зачем полученные числа суммировать.

В этом случае стоит работать по формуле:

Rобщ= R1+ R2+…+ Rn+ Ra, где:

R1-Rn- термическое сопротивление слоев разных материалов;

Ra.l– термосопротивление закрытой воздушной прослойки. Величины можно узнать в таблице 7 п. 9 в СП 23-101-2004. Прослойка воздуха не всегда предусмотрена при постройке стен. Подробнее о расчетах смотрите в этом видео:

https://youtube.com/watch?v=0bwsJcTqaXQ

Сопротивление композитной стены

Параллельное тепловое сопротивление

Как и в случае с электрическими цепями, полное тепловое сопротивление для установившегося режима можно рассчитать следующим образом.

Параллельное тепловое сопротивление в композитных стенах

Общее термическое сопротивление

1Rtot=1RB+1RC{\displaystyle {{1 \over R_{\rm {tot}}}={1 \over R_{B}}+{1 \over R_{C}}}}          (1)

Упрощая уравнение, получаем

Rtot=RBRCRB+RC{\displaystyle {R_{\rm {tot}}={R_{B}R_{C} \over R_{B}+R_{C}}}}          (2)

Используя термины для термического сопротивления проводимости, мы получаем

Rt,cond=L(kb+kc)A{\displaystyle {R_{t,{\rm {cond}}}={L \over (k_{b}+k_{c})A}}}          (3)

Сопротивление последовательно и параллельно

Часто целесообразно предполагать одномерные условия, хотя тепловой поток многомерен. Теперь для этого случая можно использовать две разные схемы. Для случая (а) (показанного на рисунке) мы предполагаем изотермические поверхности для нормальных к направлению x, тогда как для случая (b) мы предполагаем адиабатические поверхности, параллельные направлению x. Мы можем получить разные результаты для общего сопротивления, и соответствующие фактические значения теплопередачи заключены в скобки . Когда многомерные эффекты становятся более значительными, эти различия увеличиваются с увеличением .ртот{\ displaystyle {R_ {tot}}}q{\ displaystyle {q}}|kж-kграмм|{\ displaystyle {| k_ {f} -k_ {g} |}}

Эквивалентные тепловые схемы для последовательно-параллельной композитной стены

Радиальные системы

Сферические и цилиндрические системы можно рассматривать как одномерные из-за градиентов температуры в радиальном направлении. Стандартный метод может использоваться для анализа радиальных систем в условиях стационарного состояния, начиная с соответствующей формы уравнения теплопроводности, или альтернативный метод, начиная с соответствующей формы закона Фурье . Для полого цилиндра в установившемся режиме без тепловыделения соответствующая форма уравнения теплопроводности имеет вид

1rddr(krdTdr)={\displaystyle {{1 \over r}{d \over dr}\left(kr{dT \over dr}\right)=0}}          (4)

Где рассматривается как переменная. При рассмотрении соответствующей формы закона Фурье физическое значение рассмотрения как переменной становится очевидным, когда скорость, с которой энергия проходит по цилиндрической поверхности, представлена ​​как
k{\ displaystyle {k}}k{\ displaystyle {k}}

qr=−kAdTdr=−k(2πrL)dTdr{\displaystyle {q_{r}=-kA{dT \over dr}=-k(2\pi rL){dT \over dr}}}          (5)

Где область, перпендикулярная направлению теплопередачи. Уравнение 1 подразумевает, что величина не зависит от радиуса , из уравнения 5 следует, что скорость теплопередачи является постоянной в радиальном направлении.
Азнак равно2πрL{\ displaystyle {A = 2 \ pi rL}}kр(dТdр){\ displaystyle {kr (dT / dr)}}р{\ displaystyle {r}}qр{\ displaystyle {q_ {r}}}

Полый цилиндр с условиями конвективной поверхности по теплопроводности

Чтобы определить распределение температуры в цилиндре, уравнение 4 может быть решено с применением соответствующих граничных условий . В предположении, что постоянный
k{\ displaystyle {k}}

T(r)=C1ln⁡r+C2{\displaystyle {T(r)=C_{1}\ln r+C_{2}}}          (6)

Используя следующие граничные условия, можно вычислить
константы иC1{\ displaystyle {C_ {1}}}C2{\ displaystyle {C_ {2}}}

T(r1)=Ts,1{\displaystyle {T(r_{1})=T_{s,1}}}          and          T(r2)=Ts,2{\displaystyle {T(r_{2})=T_{s,2}}}

Общее решение дает нам

Ts,1=C1ln⁡r1+C2{\displaystyle {T_{s,1}=C_{1}\ln r_{1}+C_{2}}}          and          Ts,2=C1ln⁡r2+C2{\displaystyle {T_{s,2}=C_{1}\ln r_{2}+C_{2}}}

Решение для и и подставляя в общее решение, получим
C1{\ displaystyle {C_ {1}}}C2{\ displaystyle {C_ {2}}}

T(r)=Ts,1−Ts,2ln⁡(r1r2)ln⁡(rr2)+Ts,2{\displaystyle {T(r)={T_{s,1}-T_{s,2} \over {\ln(r_{1}/r_{2})}}\ln \left({r \over r_{2}}\right)+T_{s,2}}}          (7)

Логарифмическое распределение температуры схематично показано на вставке эскиза рисунка. Предполагая, что распределение температуры, уравнение 7, используется с законом Фурье в уравнении 5, скорость теплопередачи может быть выражена в следующей форме

Q˙r=2πLk(Ts,1−Ts,2)ln⁡(r2r1){\displaystyle {{\dot {Q}}_{r}={2\pi Lk(T_{s,1}-T_{s,2}) \over \ln(r_{2}/r_{1})}}}

Наконец, для радиальной проводимости в цилиндрической стенке тепловое сопротивление имеет вид

Rt,cond=ln⁡(r2r1)2πLk{\displaystyle {R_{t,\mathrm {cond} }={\ln(r_{2}/r_{1}) \over 2\pi Lk}}} such that r2>r1{\displaystyle {r_{2}>r_{1}}}
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector