Как правильно переделать электродвигатель с 380 вольт на 220: схема с пошаговой видео-инструкцией

Включаемся в однофазную сеть

Итак, осталось только глубинно рассмотреть, как подключить контактор по выше указанным схемам.

Начать стоит с треугольника. Вот самая простая схема подключения:

На ней видно, что один провод от сети идет на конденсатор. Его можно припаять прямо к выходу. От этого же контакта провод идет на средний вход коробки подключения мотора.

Второй провод от сети идет на крайний левый контакт

Обратите внимание, что разницы нет, какой провод вести на конденсатор, а какой на двигатель, ведь в розетках переменное напряжение. Оставшийся выход на конденсаторе необходимо соединить с оставшимся входом на двигателе

Со звездой ситуация обстоит еще проще. Строится схема вот так:

Перед тем, как подключить конденсатор к электродвигателю 220в, лучше поставить хороший пакетник. «звезда» может отключать электричество, если двигатель сильно нагрузить.

Для начала нужно найти фазу и ноль – здесь это важно. Понадобится мультиметр, который необходимо включить в положение «переменное напряжение 220»

Теперь вставьте красный щуп в отверстие на розетке, а второй прислоните к стене или заземлительному контакту. Если показывает «220» – значит тот провод, которого касаются щуп, фазный. Если на экране «-220» — вы нащупали ноль.

Фаза идет в пакетник, где разделяется. Один проводок нужно пустить на Н1, а второй на блок конденсаторов. Ноль сразу идет на Н3. Конденсаторы через переключатель соединяются последовательно.

Продвигаемся к кнопочному посту

На кнопочном посту, в моём случае, две кнопки – «СТОП» (её контакты постоянно замкнуты) и «ПУСК» (контакт постоянно разомкнут, и замыкается только в момент нажатия). Первое, что необходимо сделать – это соединить перемычкой фазную клемму рабочего пускателя и контакт кнопки «СТОП», подав на неё питание.

Присоединяем один конец перемычки к фазной клемме («L1») и протягиваем контактВторой конец идёт на клемму кнопки «СТОП»

Также следует отметить, что если кнопочный пост уже был ранее где-либо установлен, то перемычка  между контактами «ПУСК» и «СТОП» может отсутствовать. В этом случае её нужно установить. Сделать это очень просто – из фото ниже чётко видно, как выполнить подобную работу.

Перемычка между пусковой и стоповой кнопкой необходима

Продолжаем подключение кнопочного поста

Далее необходимо собрать схему таким образом, чтобы пусковая кнопка взаимодействовала с катушками обоих пускателей. Для этого монтируется перемычка между ней и одним из постоянно разомкнутых контактов катушки рабочего магнитного пускателя. В нашем случае, я выбрал зелёный провод. Один его конец фиксируем на контакте кнопки «ПУСК», к которому подходит перемычка от стоповой.

Соединение на пусковой кнопке — работа с постом практически завершена

Второй конец соединяем с катушкой рабочего пускателя и тоже сразу затягиваем – здесь больше соединений не будет.

Коммутация с постоянно разомкнутым контактом катушки рабочего пускателя

Осталось завершить подключение кнопочного поста. Монтируем перемычку со свободного контакта пусковой кнопки на питание катушки дополнительного пускателя. Таким образом, получится, что при нажатии на кнопку «ПУСК» питание будет подаваться на конденсатор 50 мкФ, но только в то время, пока она удерживается. Если кнопку отпустить (двигатель запущен), цепь разрывается, подача питания на катушку прекращается, и контакты дополнительного пускателя размыкаются.

Присоединяем один конец перемычки к свободному контакту кнопки «ПУСК»Второй конец этого провода коммутируется с клеммой катушки дополнительного пускателя

Стандартная схема включения трехфазного двигателя в однофазную сеть

Процесс подключения трехфазного двигателя к напряжению 230 вольт прост. Обычно ветка несет синусоиду, разница составляет 120 градусов. Формируется фазовый сдвиг, равномерный, обеспечивает плавность вращения электромагнитного поля статора. Действующее значение каждой волны составляет 230 вольт. Это позволит подключить трехфазный двигатель к домашней розетке. Фокус цирковой: получить три синусоиды, используя одну. Сдвиг фаз равен 120 градусов.

На практике означенное сделать можно, заручившись помощью специальных приборов фазовращателей. Не тех, что используются высокочастотными трактами волноводов, а специальных фильтров, сформированных пассивными, реже активными элементами. Любители заморочкам предпочитают применение заправского конденсатора. Если обмотки двигателя соединить треугольником, сформировав единое кольцо, получим сдвиги фаз 45 и 90 градусов, хватает худо-бедно для неуверенной работы вала:

Схема подключения трехфазного двигателя коммутацией обмоток треугольником

  1. На одну обмотку подается фаза розетки. Провода цепляют разницу потенциалов.
  2. Вторая обмотка запитывается конденсатором. Формируется сдвиг фаз 90 градусов относительно первой.
  3. На третьей за счет приложенных напряжений образуется слабо похожее на синусоиду колебание со сдвигом еще на 90 градусов.

Итого, третья обмотка отстоит от первой по фазе на 180 градусов. Показывает практика, расклада хватает нормально работать. Разумеется, двигатель иногда «залипает», сильно греется, мощность падает, хромает КПД. Пользователи мирятся, когда подключение асинхронного двигателя к трехфазной сети исключено.

Из чисто технических нюансов добавим: схема правильной раскладки проводов приводится на корпусе прибора. Чаще украшает внутреннюю сторону кожуха, скрывающего колодку, либо вычерчена неподалеку на шильдике. Руководствуясь схемой, поймем, как подключить электродвигатель с 6 проводами (по паре на каждую обмотку). Когда сеть трёхфазная (часто называют 380 вольт), обмотки соединяются звездой. Образуется одна общая катушкам точка, куда стыкуется нейтраль (условный схемный электрический нуль). На прочие концы подаются фазы. Получается три – по числу обмоток.

Как обращаться с треугольником для подключения трехфазного двигателя на 230 вольт, понятно. Дополнительно приводим рисунок, изображающий:

  • Схему электрического соединения обмоток.
  • Рабочий конденсатор, служащий цели создания правильного распределения фаз.
  • Пусковой конденсатор, облегчающий раскрутку вала на начальных оборотах. В последующем отключается от схемы кнопкой, разряжается шунтирующим резистором (для безопасности и пребывания в готовности к новому циклу пуска).

Подключение трехфазного двигателя 230 вольт треугольником

Картинка показывает: обмотка А находится под напряжением 230 вольт. На С подается со сдвигом фаз 90 градусов. Благодаря разности потенциалов, концы обмотки В формируют напряжение, сдвинутое на 90 градусов. Очертания далеки привычной школьным физикам синусоиде. Опущены в целях упрощения пусковой конденсатор, шунтирующий резистор. Считаем, расположение очевидно из сказанного выше. Подобная методика худо-бедно позволит добиться от двигателя нормальной работы. Клавишей пусковой конденсатор замыкается, осуществляя пуск, отключается от фазы, разряжается шунтом.

Пришло время сказать: емкость, обозначенная чертежом 100 мкФ, практически выбирается, учитывая:

  1. Частоты вращения вала.
  2. Мощность двигателя.
  3. Нагрузки, ложащиеся на ротор.

Подбирать нужно конденсатор экспериментальным путем. Согласно нашему рисунку, напряжение обмоток В и С будет одинаковым. Напоминаем: тестер показывает действующее значение. Фазы напряжения будут различны, форма сигнала обмотки В несинусоидальная. Действующее значение показывает: в плечи отдается одинаковая мощность. Обеспечивается боле менее стабильная работа установки. Мотор меньше греется, оптимизируется КПД двигателя. Каждая обмотка сформирована индуктивным сопротивлением, которое также накладывает отпечаток на сдвиг фаз между напряжением и током

Вот почему важно подобрать правильное значение емкости. Можно добиться идеальных условий работы двигателя

Работа такого двигателя в однофазной сети

Для правильного понимания поставленной задачи нужно четко представлять, по какому принципу работают трехфазные электродвигатели. Имея три обмотки, смещенные на 120°, они находятся в идеальных условиях: магнитное поле равномерно вращается по окружности, создавая движущую силу без каких-либо рывков и пульсаций. После подачи в схему напряжения, появляется пусковой момент, и ротор начинает раскручиваться до рабочих оборотов.

Работа трехфазного двигателя

Трехфазный ток можно представить как три однофазные схемы, также смещенные друг относительно друга на 120°. Понятно, почему двигатель будет работать без рывков: при повороте ротора на каждую треть, он «подхватывается» следующей фазой, которая «провожает» его еще на треть оборота. И как результат получается полный оборот.

Но вот возникла необходимость включения такого аппарата на одной фазе. Если просто взять, и на любые две обмотки подать такое напряжение, то ничего не произойдет. В одной из катушек статора будет пульсирующее магнитное поле, никак не влияющее ни на что больше. Пускового момента нет, крутящего тоже – двигатель будет только нагреваться. Но теперь, зная принцип работы таких машин, несложно понять, что нужно. Необходимо задействовать все три обмотки, при этом должно быть смещение по фазам.

Подключение такого типа двигателя к однофазной сети производится по самой распространенной схеме – с пусковым конденсатором. Такой метод позволяет задействовать все три обмотки, а также создать необходимый сдвиг по фазам.

Обмотки электродвигателя можно включить по двум основным схемам: звезда и треугольник. В зависимости от этого различается и подключение конденсатора.

Можно было бы обойтись и одним конденсатором, но чаще всего электродвигатели имеют какую-то нагрузку, а значит, чтобы их запустить, нужна будет дополнительная емкость. Поэтому в цепь нужно кратковременно включить дополнительный емкостной элемент – пусковой конденсатор.

Как поменять направление вращения

Если поменять направление нужно только 1 раз, то это можно сделать еще на стадии переделки. Для этого достаточно поменять местами любые две обмотки статора. Той же цели достигает перекидывание ветки конденсаторов с нуля на фазу, или наоборот. Но если вам нужно часто реверсировать трехфазный переделанный мотор, необходим переключатель. Собрав электродвигатель по схеме ниже, вы освободите себя от смены намоток каждый раз, когда нужно задать обратное направление вращения вала.

В переделке трехфазного электрического двигателя под однофазную сеть своими руками нет ничего трудного. Наибольшую сложность составит только расчет емкости рабочего конденсатора и экспериментальный подбор емкости из подсчитанного диапазона для пускового накопителя. Но и это становится легко, если вы не потеряли технический паспорт, а под рукой есть калькулятор.

Варианты подключения однофазного двигателя

С чего же необходимо начинать подключение однофазного генератора к трехфазной сети дома? В первую очередь необходимо определиться с методом подключения, которых сегодня известно немало. Начать же их рассмотрение хочется с того, о котором уже было упомянуто нами выше — через подключение двигателя к выделенной для этих целей группе потребителей. Этот метод является основным, однако помимо него существуют и другие.

Подключение нагрузки в ручном режиме

Также подключить двигатель можно посредством использования перекидного рубильника, переключателя на 3 позиции 1-0-2. В соответствии с приведенной схемой, каждой позиции будет соответствовать следующее:

  • «1» — будет подразумевать нагрузку, запитанную от промышленной городской сети;
  • «0» — перевод рубильника в это положение будет означать, что нагрузка отключена;
  • «2» — будет соответствовать нагрузке, обеспечиваемой резервным источником электричества. В качестве такового будет выступать бензиновый, дизельный или газовый генератор.

Мы не будем слишком подробно останавливаться на устройстве составных элементов, правда, хочется отметить, что перекидной рубильник или трехпозиционный переключатель имеет довольно простую конструкцию, которая включает неподвижные контакты, соединенные с проводами (нагрузка-город-генератор), и подвижные контакты, задача которых заключается в обеспечении коммутации нагрузки с города на генератор и обратно.

Если возникла задача по переключению трехфазной нагрузки город-нагрузка, то происходит задействование сразу трех фаз. Здесь имеется в виду, что на рубильник подаются три городские фазы A-B-C, они же уходят на нагрузку. Для того чтобы нагрузка была переведена на генератор, мы должны совершать такие манипуляции, чтобы в итоге на каждую из фаз поддавалось электричество.

Решить эту задачу можно путем незначительного усовершенствования нашего переключателя рубильника: с той стороны, где будет подключаться генератор, потребуется установить перемычку между фазами A-B-C. В дальнейшем, когда нагрузка будет поступать на генератор, каждая из фаз будет обеспечена электричеством.

Подключение нагрузки посредством контакторов

Когда нагрузка создается городской сетью, то каждая из фаз, которая подключена к контактору, будет идти на нагрузку. При появлении в системе генератора поступают аналогичным образом, что и с перекидным рубильником: на клеммах контактора там, где подключен кабель, идущий от генератора, придется поместить перемычку между фазами и A-B-C.

Конструкция и принцип работы

Подключают электродвигатель через конденсатор по причине, что одна обмотка на статоре электродвигателя на 220 В с переменным током создает магнитное поле, которое компенсирует свои импульсы за счет смены полярности с частотой 50 Гц. В этом случае движок гудит, ротор остается на месте. Для создания крутящего момента делают дополнительные подсоединения пусковых обмоток, где электрический сдвиг по фазе будет 90° по отношению к рабочей обмотке.

Не путайте геометрические понятия угла расположения с электрическим сдвигом фаз. В геометрическом измерении обмотки в статоре размещаются друг напротив друга.

Чтобы осуществить это технически, конструкция электромотора предусматривает большое количество механических деталей и составляющих электрической схемы:

  • статор с основной и дополнительной обмоткой пуска;
  • короткозамкнутый ротор;
  • борно с группой контактов на панели;
  • конденсаторы;
  • центробежный выключатель и многие другие элементы, показанные выше на рисунке.

Рассмотрим, как подключить однофазный двигатель. С целью смещения фаз последовательно в пусковую обмотку включается конденсатор, при подключении однофазного асинхронного электродвигателя круговое магнитное поле наводит в роторе токи. Совокупность силы полей и токов создают вращающий импульс, прилагаемый к ротору, он начинает вращаться.

Преимущества схемы тиристорного преобразователя: автор В Соломыков

Эта разработка позволяет максимально эффективно сохранить мощность асинхронного двигателя при его подключении в однофазную сеть. Она является прообразом современных частотных преобразователей, но выполнена на старой и доступной элементной базе.

Тиристорный преобразователь позволяет сделать формы напряжений на каждой фазе очень похожими на идеальные, гармоничные синусоиды, под которые и создается асинхронный электродвигатель.

Питание от сети 220 вольт происходит через защиту — автоматический выключатель SF1 и диодный мост на базе Д233В.

Силовые выходные цепи образуются работой тиристорных ключей VS1-VS6.

Сдвиг фаз токов для питания каждой обмотки двигателя своим напряжением создается работой двух микросхем:

  1. DD1 — К176ЛЕ5;
  2. DD2 — К176 ИР2.

Они формируют такты сдвига напряжений сигналов в регистрах, а их сочетания подаются на входы управления тиристорами VS1÷VS6 через индивидуальные транзисторы VT1÷VT6 по запланированной временной диаграмме.

Логическая часть

Микросхема К176ИР2 вырабатывает по 2 раздельных 4-х разрядных регистра сдвига с четырьмя выходами Q от любого триггера. Каждый триггер двухступенчатый, типа D.

Ввод данных в регистр происходит через вход D. Также имеется вход для тактовых импульсов типа C. Они поступают через вход D 1-го триггера, а затем смещаются по ходу вправо на один такт.

Обнуление данных на выходе регистра Q происходит при поступлении на вход R (асинхронный сброс) напряжения логического уровня.

Таблица данных К176ИР2 и состояний регистров

Число разрядов 4х2 Входы Выход
Сторона сдвига Направо C D R Q0 Qn
Тип ввода Последовательно H Н H Qn-1
Тип вывода Параллельно B H B Qn-1
Тактовая частота 2,5MHz X H Q1 Qn не меняется
Рабочая температура -45÷+85 X X B H H

Работой микросхемы К176ИР2 управляет элементы DD1 на сборке К176ЛЕ5.

Они обеспечивают подачу импульсов на управляющие электроды тиристоров по следующей временной диаграмме.

Силовая часть схемы, принципы ее управления и наладки

При подаче напряжения на схему обнуляется регистр сдвига микросхемы DD2 до окончания заряда емкости C2 по цепочке через R5. В момент заряда срабатывает логический элемент DD1.1, разрешающий сдвиг импульса регистру DD2.

При переходе регистра в положение «логической 1» подается сигнал на базу его биполярного транзистора (VT1÷VT6). Последний открывается и подает команду на управляющий электрод своего тиристора.

В результате работы этой цепочки между выходными силовыми клеммами создается трехфазное напряжение (довольно близкое к синусоидальной форме) со сдвигом векторов между собой на 120 градусов.

Асинхронный двигатель, работающий по этой схеме, развивает наибольшую мощность по сравнению с тремя предыдущими вариантами.

Частота коммутации тиристоров подбирается экспериментально при наладке за счет выбора номиналов емкостей С4, С5, С6. Их номиналы зависят от мощности электродвигателя.

Емкость конденсаторов предварительно рассчитывают по формуле:

При номинальной частоте вращения ротора выставляют n=1.

Резисторы R3 и R4 после окончания настройки устройства демонтируют, а вместо R4 запаивают конденсатор с емкостью 0,68 микрофарад.

Затем к точкам A и B припаивают регулировочный резистор на 15 килоом. Его назначение — точное выставление частоты вращения ротора у двигателя.

Все четыре схемы, которые я привел, не содержат дефицитных деталей и могут быть собраны в домашних условиях людьми с начальным уровнем навыков электрика.

Для продвинутых мастеров могу порекомендовать схему, по которой выполнил подключение трехфазного двигателя к однофазной сети без конденсаторов на современной электронной базе владелец сайта Радиокот.

Он фактически собрал частотный преобразователь, которому отдал много времени. К тому же простым паяльником и обычным цифровым мультиметром там отделаться не получится. Нужны практические навыки, специальный инструмент, осциллограф для наладки.

Все это я написал, чтобы подвести вас к выводу: запустить асинхронный двигатель на 3 фазы в сеть 220 вольт без потерь мощности можно только через промышленный частотный преобразователь.

Рекомендую посмотреть два коротких видеоролика по этой теме и сравнить результат.

Видео владельца Kick Ass с самодельным регулятором по схеме В Голик.

Видео владельца Capricorn WorkShop о самом простом частотном преобразователе.

Выводы сделайте сами. А если остались еще вопросы и неясности, или заметили случайную ошибку, то воспользуйтесь разделом комментариев. Обязательно обсудим.

Выбираем автоматический выключатель и пусковое устройство.

Прежде чем заняться подключением двигателя, давайте подберем пускорегулирующую аппаратуру. Современная промышленность выпускает огромное количество автоматов для защиты электродвигателя. Купив такой прибор, можно сразу отбросить вопросы по дальнейшему выбору.

Это интересно — «Способы крепления светильников».

Единственное, что придется сделать — рассчитать аппарат по номинальному току. Вычисляется по формуле: для трехфазной сети —  I  = Р/ Un*1 .73*n*cosф, и для однофазной — I  = Р/ Un*cosф, где Р – мощность электромотора, Un – рабочее напряжение, n – его КПД (как правило, есть в паспорте на изделие, обычно 0,85), а cosф – коэффициент мощности (можно найти в паспорте, для электромоторов, обычно, он равен 0,85). Далее получив результат, умножаем его на температурный коэффициент (это примерно 1,2). Из этого следует, что если, к примеру, мы имеем двигатель 1кВт – то его номинальный ток получится 2,1А  для 380в и 6,3А для 220в. Подбираем автоматические выключатели (АВ) с ближайшими параметрами на увеличение. Хорошо зарекомендовали себя автоматы защиты двигателя с встроенным тепловым реле производства Moeller, ABB, Schneider Electric. Но есть одно «НО», они достаточно дорогие.

Поэтому, исходя из финансовых вопросов, берем обычный модульный АВ с характеристикой «С». Однако, к нему еще необходимо тепловое реле (теплушка). Самым оптимальным вариантом будет выбор ПМЛ-1220. И наконец, давайте сами соберем это устройство, тем более, что в нем нет ничего сложного. Нам понадобится: кроме АВ, модульный или просто контактор с 4 нормально-разомкнутыми контактами. Теплушка и две кнопки без фиксации (по одной с нормально-разомкнутыми нормально-замкнутым контактами). Дальше делаем как представлено ниже.

Как подключить по схеме «звезда-треугольник» (с тремя проводами)

В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется — пересобрать треугольник.

Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.

Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.

Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.

К первому (К1) подключается ток, а к другому — обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.

Далее обмотка последнего пускателя (К2) объединяется с оставшимися фазам для создания схемы «треугольник».

Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».

Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.

Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.

Принцип работы схемы прост:

  • При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
  • Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
  • Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.

Проверка и сборка

Далее делают сборку двигателя, наживив основные болты для «прозвонки» и проверки токов каждой фазы. С помощью токовых клещей проверяют токи обмоток каждой из фаз через нагрузку и автоматический выключатель. Они должны быть одинаковыми. Затем двигатель собирают, закручивая все болты и проверяя его на правильность вращения и работу в холостом режиме.

Если всё работает нормально, то механизм разбирают снова для покрытия обмоток статора лаком. Статор помещают в лак для пропитки обмоток и заполнения пустот. Затем его поднимают, давая стечь лаку, и сушат на открытом воздухе или в специальной сушилке. Для ускорения сушки применяют лампу накаливания мощностью 0,5-1 кВт, вставленную в статор и включённую в сеть.

После просушки двигателя производят его полную сборку, ещё раз проверяют сопротивление изоляции. Делают проверку двигателя на холостом ходу. Лучше для этой цели использовать понижающий трансформатор и автоматический выключатель (желательно УЗО). Только после проверки можно использовать двигатель на полном напряжении.

Правильно провести перемотку помогут следующие советы специалистов:

При проведении всех работ необходимо пользоваться исправным инструментом, а также заведомо исправными измерительными приборами и тестерами

Особое внимание нужно обратить на исправность защиты элементов питания , качество изоляции и влажность материалов, применяемых во время ремонта

Однофазный асинхронный электродвигатель с короткозамкнутым ротором должен иметь пусковую и рабочую обмотки. Их расчет производят так же, как расчет обмоток трехфазных асинхронных двигателей.

Число проводников в пазу рабочей обмотки (укладывается в 2/3 пазов статора) N р = (0.5 ÷ 0.7) x N x U с / U , где N — число проводников в пазу трехфазного электродвигателя; U с — напряжение однофазной сети, В; U — номинальное напряжение фазы трехфазного двигателя, В.

Меньшие значения коэффициента берутся для двигателей большей мощности (около 1 кВт) с кратковременным и повторно-кратковременным режимами работы.

Диаметр (мм) провода по меди рабочей обмотки, где d — диаметр провода по меди трехфазного двигателя, мм.

Пусковая обмотка укладывается в 1/3 пазов.

Наиболее распространены два варианта пусковых обмоток: с бифилярными катушками и с дополнительным внешним сопротивлением.

Обмотка с бифилярными катушками наматывается из двух параллельных проводников с разным направлением тока (индуктивное сопротивление рассеяния бифилярных обмоток близко к нулю).

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Читать также: Смазка для перфоратора какая лучше

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Виды шаговых двигателей по типу соединения электромагнитов статора:

По типу соединения электромагнитов, шаговые двигатели делятся на: униполярные и биполярные.

На рисунке представлено упрощённое, схематическое, представление обмоток. На самом деле, каждая обмотка состоит из нескольких обмоток электромагнитов, соединённых последовательно или параллельно

  • Биполярный двигатель имеет 4 вывода. Выводы A и A питают обмотку AA, выводы B и B питают обмотку BB. Для включения электромагнита, на выводы обмотки необходимо подать разность потенциалов (два разных уровня), поэтому двигатель называется биполярным. Направление магнитного поля зависит от полярности потенциалов на выводах.
  • Униполярный двигатель имеет 5 выводов. Центральные точки его обмоток соединены между собой и являются общим (пятым) выводом, который, обычно, подключают к GND. Для включения электромагнита, достаточно подать положительный потенциал на один из выводов обмотки, поэтому двигатель называется униполярным. Направление магнитного поля зависит от того, на какой именно вывод обмотки подан положительный потенциал.
  • 6-выводной двигатель имеет ответвление от центральных точек обмоток, но обмотка AA не соединена с обмоткой BB. Если не использовать выводы центральных точек обмоток, то двигатель будет биполярным, а если эти выводы соединить и подключить к GND, то двигатель будет униполярным.
  • 8-выводной двигатель является наиболее гибким в плане подключения электромагнитов. Данный двигатель можно не только использовать как биполярный или униполярный, но и самим определять, как соединить электромагниты обмоток, последовательно или параллельно.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector