Мегаомметр, что это такое и как им пользоваться?

Содержание:

Правила безопасности при работе с мегаомметром

При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого группа электробезопасности не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:

  • При тестировании следует использовать диэлектрические перчатки, к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
  • Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
  • При подключении щупов необходимо касаться их изолированных участков (рукоятей).
  • После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
  • Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.

Это интересно: Как сделать дровокол своими руками — характеристики различных моделей устройства, особенности их проектирования и монтажа, схемы, фото

Действие остаточного заряда

Работающий генератор мегаомметра выдает напряжение, поэтому контур земли образует разные значения потенциалов, благодаря которым создается подобие ёмкости, обладающей определенным зарядом. После проведения измерений в проводе остается какая-то часть ёмкостного заряда. Как только человек прикасается к данному участку, электрическая травма обеспечена, поэтому постоянное использование дополнительных мер безопасности не будет лишним, а именно:

  • переносное заземление;
  • изолированная рукоятка;
  • прежде чем подключить прибор к испытуемой схеме следует проверить наличие в ней напряжения, а также остаточного заряда с помощью вольтметра.

Многие современные мегомметры внешне напоминают привычные мультитестеры. А нередко и способны выполнять ряд функций, им присущих.

Электронные приборы довольно компактны, и некоторые из них внешне даже вполне можно спутать с мультиметрами. Кстати, во многих моделях это сходство не ограничивается лишь внешним. Действительно, в них заложены некоторые функции «общего плана». Обычно это измерение постоянного и переменного напряжения, прозвон цепей и определение сопротивления в нижнем диапазоне значений, то есть от нуля до мегаома. Могут иметься и другие функции, в том числе и узкоспециализированного предназначения.

Проведение измерений – до предела упрощено. После выставления всех необходимых параметров и коммутации проводов мегомметра к проверяемому объекту, остается только нажать кнопку «TEST».

Индикация полученных показаний замеров выводится на цифровой дисплей, что, безусловно, значительно упрощает восприятие информации. Спустя несколько секунд после пуска, на дисплее появится измеренное значение сопротивления, с указанием соответствующей величины (МОм или ГОм, МΩ или GΩ).

Какие меры безопасности должны соблюдаться при работе с мегомметром

Все, казалось бы, чрезвычайно просто. Но, оказывается, такие приборы относятся исключительно к категории профессиональных. И далеко не все работники могут быть допущены к их эксплуатации – требуется определенное обучение и получение соответствующего допуска – не ниже третьей группы электробезопасности.

Автор статьи в данном случае ни в коем случае не рекомендует, как обычно принято на строительных сайтах, выполнять измерения своими руками. Но если уж какой-то хозяин дома или квартиры возьмёт на себя смелость и ответственность за выполнение самостоятельных измерений – он должен по меньшей мере максимально соблюдать требования безопасности выполнения работ.

Сам прибор не должен иметь никаких механических повреждений корпуса

Особое внимание — целостности изоляции измерительных проводов, исправности щупов, зажимов-«крокодилов», штыревых контактов для подключения к мегомметру. Любой тестируемый объект или линия в обязательном порядке обесточивается

Все автоматы переводятся в положение «выключено» или, в старых распределительных щитах, выкручиваются плавкие предохранители – пробки. В некоторых случаях требуется временное отсоединение проводов от выходных клемм автоматических выключателей.

С каким интервалом проверяется сопротивление?

Нормативы времени, через которое следует проводить плановые замеры определенных параметров, а также необходимое напряжение измерения сопротивления изоляции более подробно расписаны в документации ПТЭЭП. Каждый год проверяется сопротивление изоляции приборов освещения, крановой и лифтовой проводки. В других случаях это происходит раз в несколько лет. Каждые полгода осуществляется проверка переносного сварочного и электрооборудования.

Шанс на возникновение разного рода нежелательных поломок может повышаться, если не будут выполняться данные требования. На нарушителей могут быть наложены соответствующие санкции в виде штрафов. Во всех организациях должны быть распланированы даты проведения подобных замеров. Опираться при этом следует на технические запросы и особенности, которым обязательно должна соответствовать техника и каждая кабельная линия. Измерение сопротивления изоляции осуществляется в процессе эксплуатационных испытаний.

Методы проведения измерений

Пользоваться омметром не сложно. Они выпускаются двух видов — с параллельным и последовательным подключением к измеряемой цепи. Существуют и универсальные варианты приборов, тип соединения в которых задается селектором.

Для начала измерений, рукоятками или клавишами управления выставляется глубина исследуемых значений, среди которых микро-, милли-, кило-, мега-, или обычные Омы. В магнитоэлектрических приборах выставляется «0» индикатора, для остальных — этап пропускается. Омметр подключается к исследуемой цепи, согласно своему виду — последовательно или параллельно. На шкале или экране устройства отобразятся итоговые значения сопротивления.

Все сказанное верно в отношении обычных измерителей. Но, существует подкласс омметров, которые рассчитаны на проведение исследований диэлектрических материалов. К примеру, защитных оболочек кабеля или изоляции провода. Работа с ними немного отличается хотя бы тем, что проверка выполняется не на замкнутой цепи, а в двух различных проводниках, разделенных прослойкой из материала, характеристики которого нужно выяснить. Здесь хорошим примером будут изолированные жилы классического кабеля. Устойчивость к пробою между которыми, проверяется и производителем, и конечным пользователем высоковольтных линий прохождения тока.

У омметров, рассчитанных на измерение мегаом, зачастую присутствует третий контакт, к которому подводят экран изолированного провода.

Сама процедура, у устройств высоковольтного плана, занимает определенное время, указанное в эксплуатационных характеристиках проверяемого материала. Весь период испытаний, значения сопротивления изоляции меняться не должно.

Сама генерация необходимого в измерениях тока может производится вращением человеческой силой выведенной ручки, сторонним источником питания, или преобразованием внутренней энергии прибора в повышенный вид. Часто мегаомметры оснащены таймером, демонстрирующим период времени прохождения испытания.

Устройство и принцип работы мегаомметра

Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).

Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

Конструктивно модели мегаомметров принято разделять на два вида:

  • Аналоговые (электромеханические) – мегаомметры старого образца.Аналоговый мегаомметр
  • Цифровые (электронные) – современные измерительные устройства.Электронный мегаомметр

Рассмотрим их особенности.

Электромеханический мегаомметр

Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

Упрощенная схема электромеханического мегаомметра

Обозначения:

  1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
  2. Аналоговый амперметр.
  3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
  4. Сопротивления.
  5. Переключатель измерений кОм/Мом.
  6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
На отображаемые данные влияет равномерность вращения динамо-машины.
Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, – вращает ручку генератора.
Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Причем один из них выполняет сугубо физическую работу, – вращает ручку генератора.
Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.

Современная аналоговая модель мегаомметра Ф4102

Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

Электронный мегаомметр

Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.

Опасность повышенного напряжения устройства

В работе с мегаомметром существуют специфические особенности, на которые следует обращать пристальное внимание. В первую очередь это связано с повышенным напряжением прибора

Встроенный генератор обладает выходной мощностью, достаточной не только для проверки изоляции, но и для получения серьезной электротравмы. Поэтому, в соответствии с правилами электробезопасности, использовать мегаомметр могут только подготовленные и обученные специалисты, не менее чем с 3-й группой допуска.

В процессе замеров повышенное напряжение охватывает проверяемый участок, а также клеммы и соединительные провода. Защита от этого обеспечивается щупами, имеющими усиленную изолированную поверхность. Они предназначены для установки на измерительные провода. Концы щупов ограничены запретной зоной с помощью предохранительных колец. Таким образом, предупреждается касание к ним открытых частей тела.

Для выполнения измерения на измерительных щупах предусмотрена специальная рабочая зона, за которую можно смело браться руками. Непосредственное подключение к схеме осуществляется зажимами «крокодил» с хорошей изоляцией. Запрещается использование других типов проводов и щупов. При выполнении измерительных работ, людей не должно быть на всем проверяемом участке. Данный вопрос особенно актуален в тех случаях, когда сопротивление изоляции измеряется в длинномерных кабелях, протяженностью до нескольких километров.

От чего зависит сопротивление?

Измерение сопротивления изоляции кабельных линий обязательно проводить до и после их ремонта. Главным образом на сопротивление изоляционных оболочек проводов может повлиять температурный показатель. Чем выше показатель сопротивления, тем меньшим должно быть сечение кабеля. Разновидность материала для изготовления проводников тоже играет роль.

Если в качестве примера рассматривать стальные провода, то показатель их сопротивления будет больше, чем в алюминиевом проводе. Влажность окружающего воздуха тоже может повлиять на проводимость изоляционных материалов. По этой причине при колебании указанной величины меняется затухание.

Где используется

Изоляция, подобно любому материалу, со временем и в связи с погодными условиями портится и изнашивается. Чтобы своевременно обнаружить изоляционный дефект, применяется мегаомметр. Он нужен, чтобы измерять изоляционное сопротивление силового кабеля, электроразъема, трансформаторной межобмотки, электромашины. Также он необходим, чтобы измерять поверхностные и объемные диэлектрики. Достоинство прибора в полной автономности, независимости от источников питания и автоматическом вычислении абсорбционного и резисторного процесса.

Применение в условиях промышленности как основная сфера

На что обращать внимание при работах с мегаометром

Повышенное напряжение прибора

Выходной мощности генератора мегаомметра вполне достаточно для того, чтобы не только определить появление микротрещин в слое изоляции, но и получить серьезную электрическую травму. По этой причине правила безопасности разрешают пользоваться прибором только обученному и хорошо подготовленному персоналу, допущенному к работам в электроустановках под напряжением. А это минимум третья группа по ТБ. Повышенное напряжение прибора во время замера присутствует на испытуемой схеме, соединительных проводах и клеммах. Для защиты от него применяются специальные щупы, установленные на измерительные провода с усиленной поверхностью изоляции. На концах щупов предохранительными кольцами выделена запретная зона. К ней нельзя прикасаться открытыми частями тела. Иначе можно попасть под действие напряжения. Для манипуляций с измерительными щупами руками берутся за поверхность рабочей зоны. Во время измерений для подключения к схеме используют хорошо заизолированные зажимы типа «крокодил». Применять другие провода и щупы запрещено.

Во время проведения замера на всем испытуемом участке не должно быть людей. Особенно это актуально при замерах сопротивления изоляции длинномерных кабелей, протяженность которых может составить несколько километров.

Наведенное напряжение

Проходящая по проводам линий электропередач энергия обладает большим магнитным полем, которое, изменяясь по синусоидальному закону, наводит во всех металлических проводниках вторичную ЭДС и ток. Его величина на протяженных изделиях может достигать больших величин.

Этот фактор необходимо учитывать по двум причинам, связанным с:

Первая причина заключается в том, что при сборке схемы для замера сопротивления изоляции через измерительный орган мегаомметра потечет ток неизвестной величины и направления, вызванный наводкой электрической энергии. Его значение добавится к показанию прибора от калиброванного напряжения генератора. В итоге две неизвестных величины тока суммируются произвольным образом и создают неразрешимую метрологическую задачу. Измерение сопротивлений электрических цепей, находящихся под любым напряжением, а не только под наведенным, поэтому вообще лишено смысла.

Вторая причина объясняется тем, что работы под наведенным напряжением могут привести к получению электрических травм и требуют строгого соблюдения правил безопасности.

Остаточный заряд

Когда генератор прибора выдает напряжение в измеряемую сеть, то между шиной электрооборудования или проводом линии и контуром земли создается разность потенциалов и образуется емкость, которая получает заряд. После разрыва цепи мегаомметра за счет отключения измерительного провода часть этого потенциала сохраняется: шина или провод обладают емкостным зарядом. Стоит только человеку прикоснуться к этому участку, как он получает электрическую травму от тока разряда через его тело. По этой причине необходимо принимать дополнительные меры безопасности и постоянно пользоваться переносным заземлением с изолированной рукояткой для безопасного снятия емкостного напряжения. Перед подключением мегаомметра к схеме, изоляция которой будет замеряться, всегда необходимо поверять отсутствие на ней напряжения или остаточного заряда. Делают это испытанным индикатором или поверенным вольтметром соответствующих номиналов. После выполнения каждого замера емкостной заряд снимается переносным заземлением с использованием изолирующей штанги и других дополнительных защитных средств.

Обычно мегаомметром необходимо выполнять много замеров. Например, чтобы сделать вывод о качестве изоляции контрольного десятижильного кабеля требуется проверить ее относительно земли и каждой жилы и между всеми жилами поочередно. При каждом замере необходимо пользоваться переносным заземлением. Для быстрой и безопасной работы один конец заземляющего проводника первоначально присоединяют к контуру заземления и оставляют в таком положении до полного завершения работ. Второй конец провода прикрепляют к изоляционной штанге и с ее помощью каждый раз накладывают заземление для снятия остаточного заряда.

Основные правила безопасного использования мегаомметра

Поверка и испытания

Любую работу в электроустановках разрешается выполнять только исправными электрическими устройствами. Применительно к мегаомметру это означат, что он должен отвечать одновременно двум требованиям и быть:

Испытание означает проверку сопротивления его собственной изоляции и всех комплектующих частей в электрической испытательной лаборатории повышенным напряжением. На основе ее проведения владельцу прибора выдается сертификат, разрешающий эксплуатацию мегаомметра на определенный, ограниченный срок. Поверка выполняется специалистами метрологической лаборатории с целью определения класса точности прибора и нанесения на его корпусе клейма о прохождении контрольных замеров. Владелец обязан принимать меры к сохранности нанесенного клейма с датой и номером поверителя. Если оно исчезнет, то прибор автоматически считается неисправным.

Виды работ

Мегаомметр выбирают для каждого замера в первую очередь по величине выходного напряжения. Им можно выполнять два разных вида проверок:

Первый способ подразумевает создание экстремального случая для испытуемого участка. С этой целью на него подается не номинальное, а завышенное напряжение, предусмотренное технической документацией. Время испытаний тоже выбирают довольно большим. Это позволяет своевременно выявить все дефекты изоляции и исключить их проявление в процессе эксплуатации.

Второй метод использует более щадящий режим. Напряжение для него подбирается меньшего значения, а время замера определяется длительностью окончания емкостного заряда измерительного участка. У электродинамических приборов оно не превышает минуты (столько надо крутить ручку со скоростью 120÷140 об/мин), а у электронных — порядка 30 секунд (держать нажатую кнопку).

Например, измерение сопротивления изоляции определенной электрической цепи необходимо выполнять мегаомметром, выдающим 500 вольт на выходе. Тогда для ее испытания потребуется прибор на 1000 V.

Измерением изоляции занимается электротехнический персонал различных профессий, а функция испытания предоставляется только специалистам лаборатории службы изоляции. Довольно часто им возможностей мегаомметра для этих целей не хватает, и они включают в работу дополнительные установки и источники постороннего напряжения, обладающие более высокими мощностями и измерительными возможностями.

Знание особенностей проверяемой схемы

До подачи высокого напряжения на измеряемый участок необходимо принять меры, исключающие поломки и неисправности его компонентов. В современном электрооборудовании работает много полупроводниковых элементов, различных конденсаторов, измерительных и микропроцессорных приборов. Они не рассчитаны на условия эксплуатации, которые создает напряжение генератора мегаомметра. Все подобные устройства необходимо защитить. Для этого их извлекают из схемы или шунтируют определенным образом. После окончания замеров вся схема должна быть восстановлена и приведена в рабочее состояние.

Как производится измерение

Замеры производятся мегаомметром для измерения сопротивления изоляции кабелей

При измерениях сопротивления силовых кабелей всегда нужно учитывать температуру окружающей среды и производить их при температуре не ниже +5.

Такие ограничения введены по той причине, что в кабеле может присутствовать влага, которая при отрицательных температурах превратится в лед, не проводящий электрический ток. Сами замеры производятся мегаомметром, внесенным в госреестр приборов, разрешенных для измерения сопротивления изоляции кабелей и проходящим ежегодную поверку.

Перед началом измерений следует обесточить линию, убедиться в отсутствии напряжения на тестируемом кабеле. Другой конец кабеля отключается от потребителя, жилы его разводятся на максимальное расстояние, а рядом выставляется человек для предотвращения непредвиденных ситуаций. Также вывешиваются запрещающие («Не включать, работают люди!») и указательные («Заземлено») плакаты. Непосредственно измерение производится мегомметром на 2500 В в течении 1 мин в нижеприведенной последовательности:

  1. Измерение сопротивления между фазными жилами: (А-В, В-С, А-С).
  2. Между фазными жилами и нулем: (А-N, В-N, С-N).
  3. В случае. если кабель пятижильный, также замеряют сопротивление между жилами и землей (А-РЕ, В-РЕ, С-РЕ).
  4. Между нулем и землей, предварительно отключив нуль от шинки (N-PE).

Мегаомметр цифровой 2500 В

По окончания измерений результаты записываются и сравниваются с допустимыми значениями, после чего составляется протокол, в котором отображаются:

  • последовательность произведенных действий;
  • тип использовавшихся для измерений средств;
  • температурный режим.

В конце пишется заключение о состоянии кабелей.

Алгоритм измерения сопротивления изоляции высоковольтных силовых кабелей

Высоковольтными силовыми кабелями называют кабели с напряжением 1000 В и выше. Сопротивление изоляции высоковольтных силовых кабелей должно быть не ниже 10 МОм (10 000 000 Ом).

Высоковольтные силовые кабеля

Условия и подготовка к измерениям такие же, как и при измерении низковольтных силовых кабелей: отключается электропитание и потребители, учитывается температура воздуха (также не ниже +5), вывешиваются плакаты и оставляется человек у другого конца испытуемого кабеля.

Алгоритм измерения высоковольтных кабелей отличается от низковольтного, измерения тут проводят не непосредственно между жилами, а между жилой и землей, предварительно заземлив прочие жилы.

Измерение производится как и в случае проверки низковольтного кабеля мегомметром на 2,5 кВ в нижеприведенной последовательности. Каждое измерение должно длиться по 1 минуте.

  1. Заземлить все жилы кабеля.
  2. Один зажим мегомметра подключить на землю, второй — на проверяемую жилу.
  3. Заземлить проверенную жилу и снять заземление со следующей проверяемой.

Вышеописанные действия повторяются с каждой проверяемой жилой, проверенные при этом нужно обязательно заземлять, делается этого для того. чтобы снять остаточное либо наведенное напряжение. Как и в случае с низковольтным кабелем, данные записываются и протоколируются.

Измерение сопротивления изоляции контрольных кабелей

Контрольными называют кабели, не предназначенные для работы в цепях с большой нагрузкой. В основном они предназначены для работы во вторичных цепях и управления различными коммутационными устройствами — реле, пускателями, а также устройствами контроля и защиты.

Сопротивление изоляции контрольных кабелей должно быть не менее 1 МОм.

Подготовительные работы те же, что и при измерении прочих типов кабеля:

  1. Отключение питания.
  2. Проверка отсутствия напряжения.
  3. Вывешивание табличек) — обязательны!

Измерение производится также мегомметром на 2500 В по тому же алгоритму, что и высоковольтные кабели, единственным отличием является необязательность отключения потребителей. Как и в предыдущих случаях, время измерения сопротивление каждой жилы составляет 1 минуту. По завершении измерительных работ результаты также записываются, а в конце составляется протокол и заключение о допустимости дальнейшей эксплуатации кабеля.

Нормы сопротивления изоляции кабеля

Для сопротивления изоляции кабеля существуют определенные госты, приведенные в данной таблице:

Наименьшее допустимое сопротивление изоляции аппаратов вторичных цепей и электропроводки

Нормы сопротивления изоляции для различных кабелей

  1. Высоковольтные силовые кабели — сопротивление не нормировано, но не не ниже 10 МОм.
  2. Низковольтные силовые кабели — не менее 0,5 МОм.
  3. Контрольные кабели — не ниже 1 МОм.

Мегаомметр

Мегаомметр — что это такое

Мегаомметр — это специальный прибор, который используют профессиональные электрики для измерения сопротивлений обмотки электросетей и электроприборов. Отличие мегаомметра от омметра состоит в том, что мегаомметр измеряет большие значения сопротивления на высоком напряжении. Напряжение для проверки сопротивления мегаомметр генерирует самостоятельно с помощью встроенного механического генератора или батарей. Величина напряжения составляет от 100 до 2500 вольт и устанавливается по значениям 100, 500, 700, 1000 и 2500 вольт.

По внешнему виду магаомметр представляет из себя прямоугольную коробочку с аналоговой шкалой с делениями в два ряда и стрелкой, которая указывает показания сопротивления при измерении изоляции. С боку располагается ручка динамо машины, раскручивая которую, вырабатывается постоянное напряжение, с помощью которого и измеряется сопротивление изоляции на измеряемом участке.

Но это мы описали внешний вид аналогового мегаомметра, современные измерители сопротивления изоляций имеют меньшие габариты, не имеют динамо машины, вместо нее батарейки или даже подключается питание от сети. Вместо аналогового датчика со стрелкой используется цифровое табло, а также есть память на некоторые прошлые циклы измерений.

Для чего нужен мегаомметр

Мегаоммерт используют для выявления повреждений в изоляции электросетей перед вводом в эксплуатацию, так же при выявлении мест уже появившихся аварийных ситуациях. Для проверки изоляции кабеля в трансформаторах, электродвигателях и любых других устройств, которые имеют электрическую обмотку с изоляцией. Основное использование мегаомметра – это измерение изоляции кабелей или другими словами, измерение сопротивления изоляции кабеля.

Испытания изоляции кабелей мегаомметром могут выявить слабые места в электросетях, как электропроводке зданий, так и в электродвигателях. Показатели, которые снимают мегаомметром, используют для определения степени изношенности изоляций, что может предотвратить неожиданные и нежелательные случаи короткого замыкания. А короткое замыкание происходит при механическом повреждении или при старении изоляции, когда токопроводящие жилы соприкасаются между собой.

Принцип работы мегаомметра

Мегаомметр работает по принципу вырабатывания различного напряжения, которое подается на испытуемый участок электросети для проверки сопротивления изоляции кабеля. В зависимости от номинальной нагрузки измеряемого прибора или электрического кабеля используют соответствующее напряжение. Перед испытанием подбирается подходящий мегаомметр, например, если нужно проверить бытовые приборы или проводку в квартире, то используется мегаомметр с напряжением не больше 250В.

Если простыми словами, то мегаомметрт подает постоянное напряжение на участок кабеля, который мы проверяем на наличие нормальной изоляции. Фиксируются показатели утечки напряжения и на основании этих показателей делаются выводы относительно нормы показателя изоляции испытуемого кабеля. Если утечка больше нормы, то считается, что изоляция повреждена и имеет место быть короткому замыканию. Что недопустимо при нормальной эксплуатации электрических сетей, т.к. чревато возгоранием кабелей, если не сработает автоматика отключения контактов при коротком замыкании кабелей.

Какие бывают мегаомметры

Название модели Диапазон измерения сопротивления Измерительное напряжение Масса прибора Габаритные размеры
ЦС0202-1, ЦС0202-2 от 200 кОм до 100 ГОм от 100 В до 2500 В до 1 кг. 220х156х61 мм.
ЭС0210, ЭС0210-Г от 0 кОм до 100 ГОм от 0 В до 600 В до 1,9 кг. 155х141х201 мм.
ЭС0202/1-Г, ЭС0202/2-Г от 0 кОм до 10 ГОм от 100 В до 2500 В до 2,2 кг. 210х150х230 мм.

Мегаомметры отличаются внешним исполнением и внутренним устройством. Аналоговые измерители сопротивления кабелей имеют динамо машину, которая, путем вращения за специальную ручку, вырабатывает постоянное напряжение, которым производятся замеры изоляции. Так же имеется аналоговое табло с делениями по двум шкалам и механическая стрелка, которая указывает на показатели. Более современные мегаомметры вместо динамо машины имеют элементы питания: аккумуляторные батареи или непосредственный блок питания. Есть цифровое табло, отображающее снимаемые показатели изоляции и память, которая хранит данные прошлых измерений.

У каждого мегаомметра есть свои плюсы и свои минусы, аналоговый больше по размерам и тяжелее, по сравнению с цифровым, но цифровой имеет прямую зависимость от элементов питания, когда аналоговый готов всегда к работе. Но выбор, каким мегаомметром пользоваться, всегда остается за вами.

{SOURCE}

Измерение сопротивления изоляции мегаомметром

Все мегаомметры в каталоге. Мегаомметр прибор для измерения сопротивления изоляции кабеля, изоляцию обмотки двигателя, диэлектрических материалов приборов. Современные мегаомметры позволяют вычеслять сразу коэффициент абсорбции и поляризации.

Коэффициент абсорбции показывает степень увлажнения изоляции кабелей, трансформаторов, электродвигателей. Коэффициент поляризации показывает степень старения изоляции. Работа мегаомметра основана на измерении протекающего тока, при подаче стабильного высокого напряжения.

У цифровых мегаомметров переключение диапазонов и определение единиц измерения производятся автоматически.

При коэффициенте поляризации менее 1 изоляция проводника изношенная необходимо заменить, при значении от 1 до 2 проводник изношенный, но эксплуатация возможна. При значении более 2 эксплуатация проводника разрешена.

 Коэффициент абсорбции вычисляется измерением скорости заряда абсорбционной емкости изоляции при приложении испытательного напряжения.

Если коэффициент абсорбции меньше 1,3 изоляция считается неудовлетворительной, необходимо сушить изоляцию.

Для работы с мегаомметром необходимо:

  1. выбрать испытательное напряжение в настройках прибора, чем больше испытательное напряжение чем больше максимальное значение сопротивления;
  2. выбрать время измерения. Из-за нестабильности сопротивления требуется проводить измерения не менее 1 минуты.

Клемму “минус”, “GUARD”, “0 V” необходимо подключать к тому проводнику, который заземлен. Измерения рекомендуется проводить дважды со сменной полярности испытательного напряжения для получения среднего результата.

Полярность испытательного напряжения указана на гнёздах мегаомметра. Результаты измерений может выглядеть как на картинке ниже.

Минимальное сопротивления изоляции проводки для бытовой сети 0,5 МОм, а для промышленной сети и производственного оборудования 1 МОм. 

Обратите внимание

Для измерения сопротивления изоляции двухжильного кабеля необходимо клеммы плюс и минус мегаомметра подсоединить к проводникам.

Если кабель одножильный тогда клеммы плюс и минус мегаомметра подключают к проводнику и экрану соответственно.

При измерении сопротивления более 10 ГОм необходимо использовать экранированный измерительный кабель, экран измерительного кабеля подключается в соответствующее гнездо. 

Если изоляция кабеля загрязненная и при больших значения сопротивления изоляции более 10 ГОм, для исключения влияния поверхностных токов утечки необходимо использовать схему подключения с тремя измерительными кабелями. Или экраннированным кабелем как у мегаомметра Е6-32, в комплекте не поставляется.

Клемма заземления в данном случае подключается к сердечнику трансформатора.

Нормы сопротивления изоляции. Измерения необходимо производить при нормальных климатических условиях при температуре 25±10 °С и влажности воздуха не более 80%.

Если в кабеле провода без экрана, то сопротивление изоляции измереяется между жилами проводов. Если провода с экраном в виде оплетки или фольги, то тогда сопротивление изоляции измеряется между жилой и экраном.

Испытания проводят при отключеных электроустановках. 

Электроустановки Значение сопротивления,не менее Испытательноенапряжение Указания
до 500 В более 0,5 Мом 500 В  Сопротивление изоляции должно быть стабильным 1 минуту
500 … 1000 В более 1 Мом 1000 В Сопротивление изоляции должно быть стабильным 1 минуту

Все мегаомметры в каталоге. 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector